==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 14-JUL-08 2K6O . COMPND 2 MOLECULE: CATHELICIDIN ANTIMICROBIAL PEPTIDE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR G.WANG . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4441.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32 86.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 28 75.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L > 0 0 188 0, 0.0 4,-1.0 0, 0.0 5,-0.0 0.000 360.0 360.0 360.0 32.5 -22.6 3.2 5.3 2 2 A L H > + 0 0 100 2,-0.2 4,-2.6 1,-0.2 3,-0.3 0.923 360.0 53.7 -74.2 -43.9 -19.6 5.3 6.3 3 3 A G H > S+ 0 0 54 1,-0.3 4,-1.3 2,-0.2 -1,-0.2 0.878 111.2 48.1 -56.6 -36.2 -18.8 3.1 9.3 4 4 A D H > S+ 0 0 103 2,-0.2 4,-1.8 1,-0.2 -1,-0.3 0.786 107.6 57.0 -73.6 -28.2 -18.9 0.2 6.8 5 5 A F H X S+ 0 0 108 -4,-1.0 4,-4.4 -3,-0.3 5,-0.4 0.947 102.6 52.5 -66.7 -50.1 -16.7 2.2 4.4 6 6 A F H X S+ 0 0 144 -4,-2.6 4,-2.3 1,-0.3 -1,-0.2 0.895 110.9 48.3 -52.8 -43.6 -13.9 2.6 7.0 7 7 A R H X S+ 0 0 186 -4,-1.3 4,-1.2 -5,-0.2 -1,-0.3 0.872 116.6 43.2 -66.0 -37.5 -13.9 -1.1 7.5 8 8 A K H X S+ 0 0 116 -4,-1.8 4,-1.6 2,-0.2 -2,-0.2 0.940 116.8 44.4 -73.8 -48.7 -13.8 -1.7 3.8 9 9 A S H X S+ 0 0 46 -4,-4.4 4,-1.5 1,-0.2 -2,-0.2 0.849 104.2 68.9 -63.5 -33.6 -11.2 0.9 3.0 10 10 A K H >X S+ 0 0 141 -4,-2.3 4,-1.2 -5,-0.4 3,-0.6 0.938 106.9 34.8 -50.1 -57.2 -9.2 -0.3 6.0 11 11 A E H 3X S+ 0 0 129 -4,-1.2 4,-1.6 1,-0.2 -1,-0.2 0.807 106.8 70.4 -70.9 -29.0 -8.3 -3.6 4.4 12 12 A K H 3X S+ 0 0 98 -4,-1.6 4,-1.7 1,-0.2 -1,-0.2 0.848 100.8 47.7 -56.7 -33.3 -8.1 -2.0 1.0 13 13 A I H S+ 0 0 80 -4,-1.5 4,-5.5 -3,-0.6 5,-0.6 0.959 102.9 59.1 -72.5 -51.2 -4.9 -0.3 2.2 14 14 A G H X5S+ 0 0 39 -4,-1.2 4,-1.0 1,-0.2 -1,-0.2 0.810 109.1 48.5 -46.0 -33.7 -3.3 -3.4 3.7 15 15 A K H X5S+ 0 0 125 -4,-1.6 4,-1.3 2,-0.2 -1,-0.2 0.948 124.1 27.2 -74.9 -50.6 -3.5 -4.9 0.2 16 16 A E H X5S+ 0 0 97 -4,-1.7 4,-2.7 2,-0.2 -2,-0.2 0.865 118.1 59.4 -79.8 -36.8 -2.0 -1.9 -1.7 17 17 A F H X5S+ 0 0 118 -4,-5.5 4,-3.0 1,-0.2 5,-0.2 0.883 105.9 50.3 -58.1 -38.6 0.0 -0.7 1.2 18 18 A K H XX S+ 0 0 198 -4,-2.3 4,-1.6 1,-0.2 3,-1.1 0.944 111.9 51.7 -67.7 -49.0 7.8 -1.7 -4.3 24 24 A I H 3X S+ 0 0 86 -4,-3.7 4,-1.9 1,-0.3 5,-0.2 0.878 101.5 62.9 -55.8 -38.4 9.3 1.3 -2.5 25 25 A K H 3X S+ 0 0 105 -4,-1.6 4,-0.7 -5,-0.3 -1,-0.3 0.863 105.0 47.0 -55.1 -36.1 11.9 -1.0 -0.9 26 26 A D H X S+ 0 0 120 -4,-1.6 4,-0.8 1,-0.3 3,-0.5 0.951 99.5 52.8 -54.6 -53.9 13.2 2.0 -5.3 28 28 A L H 3X S+ 0 0 97 -4,-1.9 4,-1.5 1,-0.3 3,-0.3 0.809 107.0 56.0 -52.6 -31.1 15.7 2.8 -2.6 29 29 A R H 3< S+ 0 0 175 -4,-0.7 -1,-0.3 -3,-0.4 -2,-0.2 0.908 113.5 37.1 -69.6 -42.5 17.8 0.1 -4.2 30 30 A N H << S+ 0 0 119 -4,-1.8 -1,-0.2 -3,-0.5 -2,-0.2 0.351 110.2 70.0 -89.9 5.5 17.8 1.7 -7.7 31 31 A L H < S+ 0 0 96 -4,-0.8 -2,-0.2 -3,-0.3 -3,-0.2 0.948 82.9 67.1 -85.0 -61.2 18.0 5.1 -6.0 32 32 A V < - 0 0 70 -4,-1.5 3,-0.2 1,-0.2 -1,-0.0 -0.408 69.9-151.3 -63.0 131.1 21.6 5.1 -4.6 33 33 A P S S+ 0 0 116 0, 0.0 2,-0.4 0, 0.0 -1,-0.2 0.843 86.1 22.0 -72.3 -33.0 24.1 5.2 -7.5 34 34 A R S S- 0 0 206 -3,-0.0 3,-0.1 3,-0.0 -3,-0.0 -0.960 76.1-152.8-140.9 119.8 26.7 3.4 -5.3 35 35 A T - 0 0 113 -2,-0.4 2,-0.2 1,-0.2 -6,-0.0 0.143 53.1 -46.6 -72.0-164.7 25.9 1.3 -2.3 36 36 A E 0 0 181 1,-0.1 -1,-0.2 0, 0.0 0, 0.0 -0.483 360.0 360.0 -70.9 134.6 28.3 0.8 0.7 37 37 A S 0 0 195 -2,-0.2 -1,-0.1 -3,-0.1 -3,-0.0 -0.574 360.0 360.0 -69.9 360.0 31.9 -0.1 -0.4