==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 18-JUL-08 2K6R . COMPND 2 MOLECULE: FULL SEQUENCE DESIGN 1 SYNTHETIC SUPERSTABLE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.SADQI,E.DE ALBA,R.PEREZ-JIMENEZ,J.M.SANCHEZ-RUIZ,V.MUNOZ . 28 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3502.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 32.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 127 0, 0.0 2,-1.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 154.0 10.1 0.3 -10.5 2 2 A Q - 0 0 196 1,-0.0 3,-0.1 3,-0.0 2,-0.0 -0.485 360.0-145.2 -66.8 103.2 10.8 1.1 -6.9 3 3 A Q - 0 0 146 -2,-1.0 2,-0.3 1,-0.1 11,-0.1 -0.375 28.7 -92.7 -69.9 148.9 8.2 -1.2 -5.2 4 4 A Y + 0 0 79 9,-0.3 9,-0.2 1,-0.2 -1,-0.1 -0.454 56.7 157.5 -63.6 121.0 6.6 0.1 -2.0 5 5 A T 0 0 114 -2,-0.3 -1,-0.2 7,-0.1 -2,-0.0 0.637 360.0 360.0-118.6 -27.7 8.8 -1.2 1.0 6 6 A A 0 0 107 3,-0.1 -2,-0.1 0, 0.0 3,-0.0 0.872 360.0 360.0 -96.4 360.0 8.0 1.3 3.9 7 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 8 8 A I 0 0 31 0, 0.0 2,-0.5 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 125.8 3.2 -1.0 4.2 9 9 A K + 0 0 198 1,-0.2 -3,-0.1 3,-0.1 -4,-0.0 -0.847 360.0 3.4-100.4 128.6 5.0 -3.7 6.3 10 10 A G S S+ 0 0 74 -2,-0.5 2,-0.4 1,-0.0 -1,-0.2 0.174 123.4 70.1 87.0 -20.3 4.0 -7.4 5.8 11 11 A R + 0 0 158 2,-0.0 2,-0.2 0, 0.0 -1,-0.0 -0.840 63.1 175.8-132.9 98.5 1.5 -6.4 3.0 12 12 A T - 0 0 94 -2,-0.4 2,-0.4 -9,-0.0 -7,-0.1 -0.603 21.0-135.1 -99.5 161.3 3.0 -5.2 -0.3 13 13 A F - 0 0 11 -2,-0.2 -9,-0.3 -9,-0.2 3,-0.1 -0.957 16.4-173.2-119.8 133.6 1.1 -4.4 -3.5 14 14 A R S S+ 0 0 249 -2,-0.4 2,-0.5 1,-0.2 -1,-0.1 0.857 84.4 44.7 -89.2 -39.7 2.1 -5.5 -7.1 15 15 A N S >> S- 0 0 66 1,-0.1 4,-1.3 0, 0.0 3,-0.7 -0.898 71.8-150.5-106.1 126.2 -0.6 -3.4 -8.7 16 16 A E H 3> S+ 0 0 126 -2,-0.5 4,-2.8 1,-0.2 5,-0.2 0.781 93.9 73.7 -66.3 -21.1 -1.1 0.2 -7.5 17 17 A K H 3> S+ 0 0 159 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.941 99.3 42.9 -57.7 -45.7 -4.7 -0.2 -8.5 18 18 A E H <> S+ 0 0 79 -3,-0.7 4,-3.0 1,-0.2 5,-0.3 0.878 112.9 52.9 -70.0 -34.6 -5.3 -2.5 -5.5 19 19 A L H X S+ 0 0 17 -4,-1.3 4,-2.3 2,-0.2 -2,-0.2 0.892 103.5 57.4 -68.8 -35.0 -3.3 -0.2 -3.2 20 20 A R H X S+ 0 0 188 -4,-2.8 4,-1.1 2,-0.2 -1,-0.2 0.908 112.9 41.7 -60.8 -37.6 -5.4 2.8 -4.3 21 21 A D H >X S+ 0 0 88 -4,-1.3 4,-1.0 -5,-0.2 3,-0.7 0.957 114.7 47.4 -74.5 -52.5 -8.4 0.8 -3.1 22 22 A F H 3X S+ 0 0 59 -4,-3.0 4,-2.2 1,-0.3 3,-0.3 0.836 106.3 62.6 -60.4 -25.6 -6.8 -0.5 0.1 23 23 A I H 3X S+ 0 0 47 -4,-2.3 4,-2.5 -5,-0.3 -1,-0.3 0.921 96.2 56.9 -65.1 -39.3 -5.7 3.1 0.7 24 24 A E H << S+ 0 0 137 -4,-1.1 -1,-0.3 -3,-0.7 -2,-0.2 0.833 106.7 51.8 -61.3 -27.0 -9.3 4.1 0.8 25 25 A K H < S+ 0 0 162 -4,-1.0 -2,-0.2 -3,-0.3 -1,-0.2 0.942 108.7 47.2 -76.2 -47.1 -9.6 1.5 3.7 26 26 A F H < S+ 0 0 64 -4,-2.2 2,-1.4 1,-0.2 -2,-0.2 0.970 102.0 69.2 -59.6 -50.1 -6.6 2.9 5.7 27 27 A X S < S+ 0 0 358 -4,-2.5 -1,-0.2 -5,-0.2 -4,-0.0 -0.510 75.6 92.4 -70.3 96.4 -7.9 6.5 5.3 28 28 A G 0 0 69 -2,-1.4 -1,-0.1 0, 0.0 -4,-0.0 -0.029 360.0 360.0 176.7 64.0 -11.0 6.2 7.5 29 29 A R 0 0 299 0, 0.0 -2,-0.1 0, 0.0 -3,-0.0 0.358 360.0 360.0-169.7 360.0 -10.6 7.2 11.2