==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=14-APR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 31-JUL-08 2K72 . COMPND 2 MOLECULE: MATRIX METALLOPROTEINASE-23; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.K.KHOO,Z.FENG,R.S.NORTON . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3242.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 45.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 281 0, 0.0 36,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-166.2 2.9 12.4 0.2 2 2 A G + 0 0 55 1,-0.1 35,-0.0 0, 0.0 0, 0.0 0.251 360.0 161.6 144.8 -10.5 0.5 10.5 -2.1 3 3 A a + 0 0 39 28,-0.1 2,-0.3 27,-0.1 -1,-0.1 -0.107 24.7 143.4 -40.3 103.1 -0.1 7.1 -0.3 4 4 A L - 0 0 126 24,-0.1 2,-0.1 33,-0.1 -1,-0.0 -0.897 31.7-164.3-153.5 121.0 -3.3 6.2 -2.2 5 5 A D - 0 0 38 -2,-0.3 25,-0.2 25,-0.2 24,-0.1 -0.381 9.1-157.4 -95.5 178.7 -4.5 2.7 -3.3 6 6 A R + 0 0 193 23,-1.2 2,-0.3 -2,-0.1 24,-0.1 0.187 65.3 57.6-143.9 19.3 -7.3 1.9 -5.8 7 7 A I - 0 0 40 22,-0.3 3,-0.2 1,-0.0 -2,-0.1 -0.935 63.2-137.8-145.0 168.8 -8.4 -1.6 -5.1 8 8 A F S S+ 0 0 194 -2,-0.3 3,-0.4 1,-0.1 4,-0.3 0.311 83.0 91.8-111.8 8.1 -9.9 -3.7 -2.2 9 9 A V > + 0 0 51 1,-0.2 4,-0.9 2,-0.1 -1,-0.1 0.065 60.6 95.1 -89.7 28.4 -7.8 -6.8 -2.7 10 10 A b H > S+ 0 0 8 2,-0.2 4,-3.9 -3,-0.2 5,-0.4 0.928 70.2 62.0 -84.7 -48.6 -5.1 -5.5 -0.3 11 11 A T H > S+ 0 0 86 -3,-0.4 4,-1.3 1,-0.3 -1,-0.1 0.893 109.5 45.6 -44.5 -41.0 -6.2 -7.3 2.9 12 12 A S H 4 S+ 0 0 65 -4,-0.3 -1,-0.3 2,-0.2 4,-0.2 0.900 115.5 45.9 -71.8 -38.2 -5.6 -10.6 1.1 13 13 A W H >X>S+ 0 0 51 -4,-0.9 5,-2.2 -3,-0.2 3,-1.8 0.928 105.2 60.4 -70.7 -43.1 -2.2 -9.4 -0.3 14 14 A A H ><5S+ 0 0 44 -4,-3.9 3,-0.6 1,-0.3 5,-0.2 0.905 112.3 39.2 -51.9 -41.1 -1.1 -8.0 3.1 15 15 A R T 3<5S+ 0 0 203 -4,-1.3 -1,-0.3 -5,-0.4 -2,-0.2 0.470 109.6 63.8 -88.7 0.4 -1.4 -11.5 4.6 16 16 A K T <45S- 0 0 161 -3,-1.8 -1,-0.2 -4,-0.2 -2,-0.2 0.448 118.5-103.8-101.1 -0.8 0.0 -13.0 1.4 17 17 A G T XX>S+ 0 0 27 -4,-0.7 4,-2.6 -3,-0.6 3,-1.9 0.609 76.4 140.6 89.7 10.8 3.4 -11.3 1.7 18 18 A F T 34< + 0 0 22 -5,-2.2 8,-0.3 1,-0.3 7,-0.2 0.759 67.9 61.6 -59.5 -20.3 2.6 -8.8 -1.0 19 19 A c T 345S+ 0 0 26 -6,-0.4 -1,-0.3 -5,-0.2 -5,-0.1 0.160 117.7 26.3 -91.9 21.7 4.4 -6.2 1.1 20 20 A D T <45S+ 0 0 124 -3,-1.9 -2,-0.2 0, 0.0 -1,-0.1 0.458 133.7 21.9-147.7 -40.4 7.7 -8.1 0.8 21 21 A V T <5S+ 0 0 99 -4,-2.6 3,-0.3 2,-0.1 -3,-0.2 0.802 136.8 26.6-105.1 -42.0 7.8 -10.2 -2.4 22 22 A R S >> + 0 0 73 -6,-0.4 4,-3.4 1,-0.3 5,-0.2 0.868 62.5 77.3 -41.9 -39.1 5.6 -5.1 -3.0 24 24 A R H 34 S+ 0 0 215 -3,-0.3 -1,-0.3 1,-0.3 4,-0.3 0.838 108.7 29.2 -43.4 -32.0 7.3 -4.0 -6.2 25 25 A L H <> S+ 0 0 65 -3,-3.5 4,-1.3 -7,-0.2 3,-0.5 0.771 118.0 55.7 -99.9 -32.1 3.7 -3.9 -7.6 26 26 A M H X S+ 0 0 0 -4,-1.6 4,-1.5 -8,-0.3 -2,-0.2 0.766 86.5 84.3 -72.3 -22.0 1.9 -3.0 -4.4 27 27 A K H < S+ 0 0 109 -4,-3.4 -1,-0.2 -5,-0.3 -2,-0.1 0.930 112.6 14.3 -45.7 -51.8 4.1 0.1 -3.9 28 28 A R H 4 S+ 0 0 184 -3,-0.5 -1,-0.2 -4,-0.3 -2,-0.2 0.640 127.3 59.6-100.4 -16.7 1.8 2.1 -6.2 29 29 A L H < S- 0 0 23 -4,-1.3 -23,-1.2 -6,-0.2 -22,-0.3 0.972 129.9 -6.2 -77.0 -55.2 -1.2 -0.3 -6.2 30 30 A b X + 0 0 1 -4,-1.5 4,-1.2 -25,-0.2 3,-0.4 -0.495 67.9 154.1-142.7 72.4 -2.0 -0.4 -2.5 31 31 A P H >> + 0 0 6 0, 0.0 5,-1.5 0, 0.0 6,-0.6 0.645 69.7 73.2 -72.9 -14.3 0.6 1.5 -0.4 32 32 A R H 45S+ 0 0 161 3,-0.2 5,-0.1 2,-0.2 -2,-0.1 0.940 103.9 35.6 -66.9 -44.6 -2.1 2.0 2.3 33 33 A S H 45S+ 0 0 49 -3,-0.4 -1,-0.1 1,-0.2 -14,-0.0 0.992 126.8 34.7 -73.1 -67.6 -2.0 -1.6 3.4 34 34 A c H <5S- 0 0 21 -4,-1.2 -1,-0.2 -8,-0.1 -2,-0.2 0.703 110.9-124.9 -61.6 -13.4 1.7 -2.5 3.1 35 35 A D T <5 + 0 0 114 -4,-0.6 -3,-0.2 -5,-0.3 -1,-0.1 0.979 52.9 158.0 69.5 55.4 2.3 1.1 4.1 36 36 A F < 0 0 33 -5,-1.5 -4,-0.1 -10,-0.2 -1,-0.1 0.187 360.0 360.0 -95.9 19.3 4.5 2.1 1.1 37 37 A a 0 0 113 -6,-0.6 -1,-0.2 -34,-0.1 -5,-0.1 0.956 360.0 360.0 -45.4 360.0 3.7 5.9 1.6