==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 03-AUG-08 2K76 . COMPND 2 MOLECULE: PGOLEMI; . SOURCE 2 SYNTHETIC: YES; . AUTHOR N.M.LINK,C.HUNKE,J.EICHLER,P.BAYER . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3016.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 153 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-165.3 10.7 -7.6 1.8 2 2 A F + 0 0 135 1,-0.2 21,-0.0 0, 0.0 24,-0.0 -0.823 360.0 177.6-122.7 94.8 8.1 -4.8 1.6 3 3 A P + 0 0 108 0, 0.0 2,-0.2 0, 0.0 -1,-0.2 0.923 62.5 76.0 -61.0 -47.4 8.3 -2.9 -1.7 4 4 A P - 0 0 22 0, 0.0 15,-0.0 0, 0.0 0, 0.0 -0.467 69.7-153.7 -69.9 133.0 5.3 -0.5 -1.0 5 5 A T - 0 0 106 -2,-0.2 14,-0.0 1,-0.0 0, 0.0 -0.925 22.7-114.9-110.3 125.2 6.1 2.3 1.5 6 6 A P - 0 0 77 0, 0.0 2,-0.1 0, 0.0 10,-0.1 -0.154 34.3-111.3 -54.1 150.8 3.1 3.8 3.4 7 7 A P - 0 0 43 0, 0.0 2,-0.1 0, 0.0 6,-0.0 -0.361 29.7-106.9 -80.6 163.8 2.2 7.5 2.7 8 8 A G - 0 0 55 1,-0.1 3,-0.3 -2,-0.1 0, 0.0 -0.317 34.2-102.6 -82.7 172.7 2.7 10.3 5.2 9 9 A E S S+ 0 0 202 1,-0.2 -1,-0.1 -2,-0.1 4,-0.0 0.899 123.9 54.5 -64.5 -36.4 -0.3 12.0 7.0 10 10 A E S S+ 0 0 196 2,-0.0 -1,-0.2 3,-0.0 3,-0.1 0.824 86.6 102.4 -66.9 -28.9 -0.1 14.9 4.6 11 11 A A S S- 0 0 30 -3,-0.3 5,-0.1 1,-0.1 0, 0.0 -0.265 89.4 -94.0 -56.4 141.1 -0.3 12.6 1.6 12 12 A P >> - 0 0 75 0, 0.0 3,-1.4 0, 0.0 4,-0.8 -0.128 29.2-115.4 -54.3 149.4 -3.9 12.5 0.0 13 13 A V H 3> S+ 0 0 113 1,-0.3 4,-1.6 2,-0.2 3,-0.2 0.788 114.3 70.5 -60.7 -22.5 -6.3 9.8 1.3 14 14 A E H 3> S+ 0 0 136 1,-0.2 4,-2.2 2,-0.2 -1,-0.3 0.895 91.1 58.8 -62.9 -34.4 -6.2 8.5 -2.3 15 15 A D H <> S+ 0 0 61 -3,-1.4 4,-2.7 1,-0.2 -1,-0.2 0.907 100.8 55.4 -61.4 -38.1 -2.6 7.4 -1.6 16 16 A L H X S+ 0 0 95 -4,-0.8 4,-2.3 -3,-0.2 -1,-0.2 0.934 105.6 51.6 -61.9 -42.2 -3.9 5.3 1.3 17 17 A I H X S+ 0 0 102 -4,-1.6 4,-2.1 1,-0.2 -1,-0.2 0.957 111.0 47.6 -60.3 -46.5 -6.3 3.5 -1.0 18 18 A R H X S+ 0 0 144 -4,-2.2 4,-3.1 1,-0.2 5,-0.3 0.916 107.1 57.3 -61.5 -40.2 -3.4 2.7 -3.4 19 19 A F H X S+ 0 0 45 -4,-2.7 4,-3.4 1,-0.2 5,-0.2 0.955 106.4 48.8 -57.2 -45.7 -1.3 1.5 -0.5 20 20 A Y H X S+ 0 0 147 -4,-2.3 4,-2.5 1,-0.2 -1,-0.2 0.925 110.2 52.7 -59.7 -40.1 -4.0 -1.1 0.3 21 21 A N H X S+ 0 0 64 -4,-2.1 4,-1.5 -5,-0.2 -2,-0.2 0.954 113.0 42.6 -61.1 -47.3 -4.0 -2.0 -3.3 22 22 A D H X S+ 0 0 66 -4,-3.1 4,-1.8 1,-0.2 -2,-0.2 0.916 111.5 55.4 -66.7 -39.8 -0.2 -2.6 -3.2 23 23 A L H X S+ 0 0 72 -4,-3.4 4,-1.7 -5,-0.3 -1,-0.2 0.925 103.2 55.8 -60.2 -40.0 -0.5 -4.4 0.1 24 24 A Q H X S+ 0 0 91 -4,-2.5 4,-2.1 -5,-0.2 5,-0.3 0.926 104.0 54.2 -59.1 -40.0 -3.0 -6.8 -1.4 25 25 A Q H X S+ 0 0 107 -4,-1.5 4,-4.2 1,-0.2 5,-0.3 0.914 102.0 59.5 -60.9 -38.7 -0.3 -7.6 -4.0 26 26 A Y H X S+ 0 0 101 -4,-1.8 4,-3.9 2,-0.2 -1,-0.2 0.948 105.9 46.6 -55.4 -49.6 2.1 -8.4 -1.2 27 27 A L H < S+ 0 0 112 -4,-1.7 -1,-0.2 2,-0.2 -2,-0.2 0.962 119.6 39.0 -60.6 -48.9 -0.2 -11.1 0.1 28 28 A N H < S+ 0 0 113 -4,-2.1 -2,-0.2 1,-0.2 -1,-0.2 0.908 119.2 49.7 -67.4 -37.0 -0.7 -12.6 -3.3 29 29 A V H < 0 0 94 -4,-4.2 -2,-0.2 -5,-0.3 -1,-0.2 0.897 360.0 360.0 -68.0 -39.0 2.9 -11.9 -4.1 30 30 A V < 0 0 151 -4,-3.9 -1,-0.2 -5,-0.3 -2,-0.1 -0.295 360.0 360.0 48.9 360.0 4.0 -13.6 -0.8