==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 08-AUG-08 2K7B . COMPND 2 MOLECULE: CALCIUM-BINDING PROTEIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR J.AMES . 76 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5737.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 65.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 37 48.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 16 A D 0 0 183 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 111.6 -18.3 -8.8 -23.6 2 17 A R - 0 0 216 1,-0.1 2,-0.4 2,-0.0 0, 0.0 0.956 360.0-150.4 48.7 82.4 -14.9 -9.6 -22.2 3 18 A S + 0 0 114 1,-0.1 -1,-0.1 2,-0.0 2,-0.0 -0.713 22.8 170.0 -87.7 130.3 -15.2 -8.2 -18.7 4 19 A L - 0 0 128 -2,-0.4 -1,-0.1 0, 0.0 -2,-0.0 0.167 41.6 -90.3-108.8-133.3 -12.0 -7.0 -17.1 5 20 A R >> + 0 0 112 1,-0.0 3,-1.0 2,-0.0 4,-0.7 -0.476 37.9 168.7-152.7 73.8 -11.4 -5.0 -13.9 6 21 A P H 3> S+ 0 0 98 0, 0.0 4,-0.5 0, 0.0 -1,-0.0 0.408 74.4 73.6 -67.5 4.7 -11.4 -1.2 -14.4 7 22 A E H >> S+ 0 0 144 2,-0.2 4,-1.8 1,-0.1 3,-0.7 0.866 87.1 55.7 -87.2 -39.9 -11.5 -1.0 -10.6 8 23 A E H <> S+ 0 0 59 -3,-1.0 4,-3.4 1,-0.2 5,-0.3 0.841 98.5 65.3 -61.6 -30.7 -7.9 -2.0 -10.0 9 24 A I H 3X S+ 0 0 53 -4,-0.7 4,-2.3 1,-0.2 -1,-0.2 0.893 103.3 45.9 -59.6 -38.8 -6.8 0.8 -12.3 10 25 A E H X + 0 0 5 -4,-0.7 3,-1.6 -5,-0.3 4,-0.6 -0.245 67.2 133.3-111.5 44.6 5.3 8.5 -6.2 21 36 A K T 34 + 0 0 171 -4,-0.3 -1,-0.2 1,-0.3 -3,-0.1 0.748 52.3 88.3 -65.5 -20.3 3.9 11.8 -4.8 22 37 A D T 34 S- 0 0 93 -3,-0.3 -1,-0.3 -5,-0.2 -2,-0.1 0.675 105.7-120.1 -52.4 -12.5 7.3 13.3 -5.6 23 38 A K T <4 S+ 0 0 189 -3,-1.6 -2,-0.1 -6,-0.2 -1,-0.1 0.955 76.1 125.4 71.8 51.4 5.7 13.9 -9.0 24 39 A D < - 0 0 77 -4,-0.6 3,-0.1 2,-0.1 -3,-0.1 0.660 64.5-135.2-111.0 -26.4 8.1 11.9 -11.1 25 40 A G S S+ 0 0 14 -5,-0.4 40,-0.4 1,-0.2 2,-0.3 0.633 77.0 84.8 79.6 12.0 5.8 9.6 -12.9 26 41 A Y - 0 0 98 38,-0.1 2,-0.3 -6,-0.1 38,-0.2 -0.996 57.4-161.2-148.9 141.4 8.1 6.7 -12.2 27 42 A I B -A 63 0A 2 36,-1.7 36,-1.8 -2,-0.3 2,-0.3 -0.902 21.1-122.5-121.7 150.8 8.7 4.3 -9.3 28 43 A N >> - 0 0 44 -2,-0.3 4,-1.6 34,-0.2 3,-0.7 -0.684 30.5-111.3 -91.6 145.4 11.7 2.1 -8.5 29 44 A C H 3> S+ 0 0 46 -2,-0.3 4,-1.2 1,-0.2 -1,-0.1 0.651 115.6 70.4 -48.1 -10.1 11.3 -1.6 -8.1 30 45 A R H 3> S+ 0 0 153 2,-0.2 4,-1.0 31,-0.2 -1,-0.2 0.984 98.3 40.8 -73.0 -59.5 12.1 -0.8 -4.5 31 46 A D H X> S+ 0 0 45 -3,-0.7 4,-3.6 1,-0.2 3,-0.7 0.900 106.0 70.9 -55.1 -40.6 8.9 0.9 -3.6 32 47 A L H 3X>S+ 0 0 3 -4,-1.6 4,-5.6 2,-0.3 5,-0.6 0.920 92.8 51.7 -39.7 -70.1 7.0 -1.7 -5.6 33 48 A G H 3X5S+ 0 0 24 -4,-1.2 4,-1.3 1,-0.3 -1,-0.3 0.859 119.9 39.1 -37.8 -40.3 7.6 -4.5 -3.2 34 49 A N H S+ 0 0 13 -4,-5.6 4,-1.6 -5,-0.3 5,-1.0 0.908 112.4 43.3 -66.6 -41.4 2.7 -4.1 -4.3 37 52 A R H X S+ 0 0 139 -13,-0.0 4,-0.8 0, 0.0 -13,-0.0 0.274 113.9 66.9-170.0 -7.2 10.9 -12.4 -4.4 47 62 A E H > S+ 0 0 63 2,-0.2 4,-1.6 3,-0.1 3,-0.3 0.858 95.0 54.7 -91.6 -47.9 8.9 -13.2 -7.5 48 63 A L H > S+ 0 0 16 1,-0.3 4,-2.1 2,-0.2 5,-0.1 0.775 105.2 63.4 -55.1 -20.3 7.4 -9.8 -8.1 49 64 A I H > S+ 0 0 59 2,-0.2 4,-1.4 1,-0.2 -1,-0.3 0.965 95.1 52.5 -67.0 -55.5 11.0 -9.0 -8.1 50 65 A E H X S+ 0 0 99 -4,-0.8 4,-1.8 -3,-0.3 -1,-0.2 0.817 109.7 53.6 -52.3 -30.4 11.9 -11.1 -11.1 51 66 A L H X S+ 0 0 28 -4,-1.6 4,-1.5 2,-0.2 3,-0.3 0.966 106.0 47.9 -71.1 -51.4 9.1 -9.2 -12.8 52 67 A S H < S+ 0 0 8 -4,-2.1 4,-0.3 1,-0.2 9,-0.2 0.680 111.9 55.9 -62.7 -13.2 10.5 -5.8 -12.0 53 68 A Q H >< S+ 0 0 102 -4,-1.4 3,-1.7 2,-0.2 -1,-0.2 0.860 97.3 57.9 -85.4 -40.4 13.8 -7.2 -13.3 54 69 A Q H >< S+ 0 0 140 -4,-1.8 3,-2.9 1,-0.3 -2,-0.2 0.869 92.5 73.3 -57.1 -31.4 12.5 -8.3 -16.6 55 70 A I G >X S+ 0 0 10 -4,-1.5 3,-1.7 1,-0.3 4,-0.7 0.860 75.1 78.7 -49.5 -36.7 11.6 -4.6 -16.9 56 71 A N G <4 S+ 0 0 104 -3,-1.7 -1,-0.3 -4,-0.3 -2,-0.2 0.643 72.0 83.4 -49.6 -10.6 15.3 -4.0 -17.4 57 72 A M G <4 S+ 0 0 144 -3,-2.9 -1,-0.3 -4,-0.2 -2,-0.1 0.323 112.5 7.0 -78.4 12.7 14.6 -5.2 -20.9 58 73 A N T <4 S+ 0 0 142 -3,-1.7 -2,-0.2 -4,-0.0 -3,-0.1 0.192 138.4 11.3-150.6 -79.0 13.6 -1.7 -21.7 59 74 A L S < S- 0 0 104 -4,-0.7 -3,-0.1 3,-0.2 4,-0.1 0.958 86.7-119.1 -77.9 -81.3 14.0 1.1 -19.2 60 75 A G S S- 0 0 51 2,-0.3 -4,-0.1 -5,-0.0 3,-0.1 0.510 79.3 -19.1 139.0 56.5 16.2 -0.1 -16.4 61 76 A G S S+ 0 0 26 -9,-0.2 2,-0.3 1,-0.2 -32,-0.2 0.800 108.5 104.8 93.0 32.1 14.6 -0.1 -12.9 62 77 A H - 0 0 62 -34,-0.2 2,-0.4 -10,-0.1 -2,-0.3 -0.905 45.6-170.5-149.6 117.8 11.8 2.4 -13.7 63 78 A V B -A 27 0A 1 -36,-1.8 -36,-1.7 -2,-0.3 2,-0.2 -0.881 10.5-148.5-112.6 140.0 8.1 1.6 -14.2 64 79 A D >> - 0 0 58 -2,-0.4 4,-3.1 -38,-0.2 3,-0.6 -0.628 44.3 -92.4 -97.5 160.6 5.5 4.0 -15.5 65 80 A F H 3> S+ 0 0 38 -40,-0.4 4,-1.3 1,-0.3 5,-0.1 0.752 130.7 58.2 -45.3 -18.1 1.9 3.7 -14.4 66 81 A D H 3> S+ 0 0 118 2,-0.2 4,-2.0 3,-0.1 -1,-0.3 0.948 110.5 35.7 -78.7 -50.2 1.7 1.6 -17.5 67 82 A D H <> S+ 0 0 34 -3,-0.6 4,-2.1 2,-0.2 5,-0.3 0.915 113.2 61.2 -68.6 -39.0 4.3 -1.0 -16.5 68 83 A F H X S+ 0 0 1 -4,-3.1 4,-1.1 1,-0.3 3,-0.3 0.929 111.0 39.3 -50.6 -47.1 3.1 -0.8 -13.0 69 84 A V H X S+ 0 0 27 -4,-1.3 4,-1.1 -5,-0.4 -1,-0.3 0.847 114.5 54.4 -72.4 -32.5 -0.2 -1.9 -14.1 70 85 A E H < S+ 0 0 117 -4,-2.0 -2,-0.2 1,-0.2 -1,-0.2 0.672 108.9 49.1 -74.7 -16.2 1.4 -4.4 -16.5 71 86 A L H X S+ 0 0 13 -4,-2.1 4,-0.5 -3,-0.3 -1,-0.2 0.677 113.9 44.0 -94.7 -20.4 3.4 -5.8 -13.6 72 87 A M H < S+ 0 0 11 -4,-1.1 -2,-0.2 -5,-0.3 -3,-0.1 0.561 102.8 67.4 -98.1 -10.6 0.4 -6.2 -11.4 73 88 A G T < S+ 0 0 33 -4,-1.1 -2,-0.1 -5,-0.1 -3,-0.1 0.815 97.0 53.4 -78.6 -31.0 -1.9 -7.7 -14.1 74 89 A P T 4 S+ 0 0 71 0, 0.0 2,-0.5 0, 0.0 -2,-0.1 0.999 114.5 28.2 -67.4 -74.1 0.1 -10.9 -14.5 75 90 A K < 0 0 76 -4,-0.5 -33,-0.1 -27,-0.0 0, 0.0 -0.791 360.0 360.0 -95.4 128.8 0.3 -12.4 -11.0 76 91 A L 0 0 113 -2,-0.5 -3,-0.1 -3,-0.1 -36,-0.0 -0.706 360.0 360.0-142.9 360.0 -2.5 -11.5 -8.5