==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER UNKNOWN FUNCTION 25-OCT-01 1K8V . COMPND 2 MOLECULE: NEUROPEPTIDE F; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.MISKOLZIE,G.KOTOVYCH . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4608.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 48.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 30.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 172 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 96.8 -14.2 10.7 15.7 2 2 A D + 0 0 169 2,-0.0 0, 0.0 0, 0.0 0, 0.0 0.970 360.0 55.3 -80.5 -66.4 -10.7 10.0 16.9 3 3 A K - 0 0 141 1,-0.1 3,-0.0 3,-0.0 0, 0.0 0.015 59.4-165.6 -60.2 174.0 -9.2 7.7 14.3 4 4 A D S S+ 0 0 158 0, 0.0 2,-0.2 0, 0.0 -1,-0.1 0.586 78.7 20.3-130.6 -45.8 -9.1 8.8 10.6 5 5 A F + 0 0 111 2,-0.1 2,-0.7 1,-0.0 -2,-0.0 -0.619 61.4 157.7-133.1 74.4 -8.3 5.7 8.5 6 6 A I S S- 0 0 99 -2,-0.2 -1,-0.0 2,-0.1 -3,-0.0 -0.278 73.8 -93.5 -92.5 48.4 -9.1 2.5 10.5 7 7 A V S S+ 0 0 106 -2,-0.7 -1,-0.1 1,-0.1 -2,-0.1 0.855 116.6 73.4 43.1 43.3 -9.5 0.4 7.4 8 8 A N + 0 0 132 2,-0.0 2,-1.5 4,-0.0 -2,-0.1 -0.106 49.4 169.9-179.5 65.7 -13.2 1.1 7.5 9 9 A P S > S- 0 0 46 0, 0.0 3,-1.7 0, 0.0 -2,-0.1 -0.259 72.8 -88.2 -82.3 50.4 -14.2 4.7 6.4 10 10 A S T 3 S- 0 0 97 -2,-1.5 -2,-0.0 1,-0.3 0, 0.0 0.808 74.4 -73.4 48.1 32.6 -17.9 3.8 6.3 11 11 A D T 3 S+ 0 0 103 1,-0.1 -1,-0.3 2,-0.1 3,-0.1 0.892 105.0 126.2 50.1 46.1 -17.2 2.7 2.7 12 12 A L < + 0 0 139 -3,-1.7 -1,-0.1 1,-0.2 2,-0.1 -0.121 63.5 46.1-122.6 35.1 -17.0 6.4 1.6 13 13 A V S S- 0 0 71 1,-0.0 -1,-0.2 0, 0.0 -2,-0.1 -0.459 121.7 -21.5-177.6 96.4 -13.6 6.2 -0.1 14 14 A L - 0 0 105 -3,-0.1 3,-0.4 -2,-0.1 -2,-0.1 0.951 60.4-150.9 60.8 93.5 -12.4 3.6 -2.5 15 15 A D S S+ 0 0 118 1,-0.3 2,-0.7 -4,-0.1 3,-0.1 0.988 83.1 13.8 -55.1 -75.8 -14.6 0.5 -2.0 16 16 A N S S+ 0 0 159 1,-0.2 -1,-0.3 2,-0.1 -2,-0.1 -0.845 100.4 87.5-110.2 97.0 -12.2 -2.3 -3.1 17 17 A K + 0 0 114 -2,-0.7 4,-0.2 -3,-0.4 -1,-0.2 0.121 46.6 110.3-178.4 37.8 -8.7 -1.0 -3.3 18 18 A A S >> S+ 0 0 55 -3,-0.1 3,-1.1 2,-0.1 4,-1.0 0.944 86.5 34.7 -85.8 -61.0 -7.0 -1.3 0.1 19 19 A A H 3> S+ 0 0 66 1,-0.3 4,-2.5 2,-0.2 5,-0.2 0.850 107.0 70.3 -63.7 -34.6 -4.5 -4.0 -0.4 20 20 A L H 3> S+ 0 0 126 1,-0.3 4,-0.5 2,-0.2 -1,-0.3 0.822 102.4 46.4 -52.3 -30.0 -3.9 -2.9 -4.0 21 21 A R H X> S+ 0 0 134 -3,-1.1 4,-1.1 -4,-0.2 3,-0.5 0.825 107.5 55.3 -80.9 -33.7 -2.2 0.1 -2.3 22 22 A D H 3X S+ 0 0 88 -4,-1.0 4,-2.2 1,-0.2 5,-0.3 0.832 97.3 64.9 -67.8 -30.8 -0.3 -2.0 0.1 23 23 A Y H 3X S+ 0 0 176 -4,-2.5 4,-1.4 1,-0.3 -1,-0.2 0.854 103.8 47.2 -59.1 -33.4 1.1 -3.9 -2.9 24 24 A L H X S+ 0 0 61 -4,-1.4 4,-1.2 -5,-0.3 3,-0.8 0.881 96.7 42.0 -48.6 -42.2 6.6 -3.5 -4.0 28 28 A N H 3X S+ 0 0 91 -4,-0.6 4,-1.2 1,-0.2 -1,-0.3 0.791 110.7 56.4 -76.5 -29.1 9.8 -1.8 -3.0 29 29 A E H 34 S+ 0 0 119 -4,-0.2 -1,-0.2 1,-0.2 -2,-0.2 0.066 108.5 50.1 -91.5 26.8 10.2 -4.2 -0.0 30 30 A Y H <> S+ 0 0 167 -3,-0.8 4,-1.0 3,-0.1 -2,-0.2 0.554 113.3 39.3-127.8 -35.7 10.1 -7.1 -2.4 31 31 A F H X S+ 0 0 95 -4,-1.2 4,-1.7 -5,-0.2 -2,-0.2 0.646 100.3 75.6 -91.1 -19.0 12.6 -6.0 -5.0 32 32 A A H X S+ 0 0 39 -4,-1.2 4,-1.0 3,-0.2 -1,-0.2 0.818 104.1 38.4 -61.8 -30.9 15.0 -4.6 -2.4 33 33 A I H 4 S+ 0 0 138 2,-0.2 -2,-0.2 1,-0.1 3,-0.2 0.952 118.5 42.7 -83.5 -60.4 15.9 -8.2 -1.5 34 34 A I H < S- 0 0 134 -4,-1.0 -2,-0.2 1,-0.2 -3,-0.1 0.680 146.3 -41.7 -61.6 -17.5 16.0 -10.0 -4.9 35 35 A G H < - 0 0 43 -4,-1.7 -2,-0.2 -5,-0.1 -3,-0.2 0.205 61.5-131.9 148.4 82.6 17.8 -6.9 -6.3 36 36 A R < - 0 0 131 -4,-1.0 2,-0.3 1,-0.2 -4,-0.1 -0.200 44.5 -90.8 -51.7 135.9 16.8 -3.3 -5.4 37 37 A P S S+ 0 0 87 0, 0.0 2,-0.3 0, 0.0 -1,-0.2 -0.315 81.3 114.3 -54.2 110.6 16.5 -1.1 -8.6 38 38 A R 0 0 189 -2,-0.3 0, 0.0 -3,-0.1 0, 0.0 -0.894 360.0 360.0-177.3 147.2 20.0 0.4 -9.1 39 39 A F 0 0 247 -2,-0.3 0, 0.0 0, 0.0 0, 0.0 -0.804 360.0 360.0-140.1 360.0 22.9 0.3 -11.5