==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CELL ADHESION 17-SEP-08 2K8O . COMPND 2 MOLECULE: INTEGRIN ALPHA-L; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.BHUNIA,S.BHATTACHARJYA,S.TAN . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4142.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 70.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 17 28.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 179 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 137.9 2.1 0.0 -1.2 2 2 A K + 0 0 161 1,-0.1 0, 0.0 2,-0.1 0, 0.0 -0.979 360.0 151.7-134.0 122.0 2.0 2.7 -3.9 3 3 A V S S- 0 0 82 -2,-0.4 -1,-0.1 39,-0.1 40,-0.0 0.581 73.5 -87.9-118.1 -23.1 2.8 2.3 -7.6 4 4 A G S > S+ 0 0 24 45,-0.0 3,-2.1 43,-0.0 4,-0.2 0.439 82.5 133.2 125.1 7.0 0.7 5.0 -9.1 5 5 A F T > + 0 0 59 1,-0.3 3,-2.1 2,-0.2 4,-0.2 0.718 62.4 78.5 -58.6 -19.9 -2.6 3.2 -9.6 6 6 A F T >> S+ 0 0 144 1,-0.3 3,-1.7 2,-0.2 4,-0.9 0.815 77.5 70.6 -58.8 -30.8 -4.2 6.3 -8.1 7 7 A K H <> S+ 0 0 60 -3,-2.1 4,-2.9 1,-0.3 5,-0.4 0.696 75.0 86.9 -60.2 -17.8 -3.8 8.0 -11.5 8 8 A R H <> S+ 0 0 122 -3,-2.1 4,-0.8 1,-0.2 -1,-0.3 0.863 96.3 37.3 -50.1 -39.5 -6.5 5.6 -12.7 9 9 A N H <> S+ 0 0 95 -3,-1.7 4,-0.8 -4,-0.2 -1,-0.2 0.891 112.6 56.0 -80.4 -43.1 -9.1 8.2 -11.5 10 10 A L H < S+ 0 0 84 -4,-0.9 4,-0.3 1,-0.2 3,-0.2 0.833 119.1 34.8 -58.1 -33.0 -7.1 11.2 -12.5 11 11 A K H >X S+ 0 0 2 -4,-2.9 4,-1.7 1,-0.2 3,-0.7 0.649 94.5 88.1 -94.6 -19.5 -7.0 9.8 -16.0 12 12 A E H 3< S+ 0 0 114 -4,-0.8 -2,-0.2 -5,-0.4 -1,-0.2 0.795 91.1 50.7 -48.6 -30.0 -10.4 8.3 -15.8 13 13 A K T >X S+ 0 0 116 -4,-0.8 4,-2.5 -3,-0.2 3,-1.8 0.863 101.4 60.1 -77.1 -38.0 -11.7 11.7 -17.0 14 14 A I T <4 S+ 0 0 13 -3,-0.7 5,-0.4 -4,-0.3 -2,-0.2 0.910 91.0 67.7 -56.0 -45.3 -9.2 11.8 -20.0 15 15 A E T 3< S+ 0 0 117 -4,-1.7 -1,-0.3 1,-0.3 -2,-0.2 0.700 123.3 18.3 -49.4 -18.3 -10.8 8.6 -21.4 16 16 A A T <4 S+ 0 0 69 -3,-1.8 -1,-0.3 -4,-0.1 -2,-0.3 0.463 125.9 59.7-128.4 -14.6 -13.8 10.9 -22.0 17 17 A G S < S- 0 0 42 -4,-2.5 -3,-0.2 -6,-0.2 -2,-0.0 0.734 107.1 -82.1 -82.9-111.7 -12.2 14.3 -21.7 18 18 A R - 0 0 164 1,-0.2 -4,-0.1 42,-0.1 -3,-0.1 0.037 55.9-121.1-153.3 29.2 -9.5 15.4 -24.1 19 19 A G - 0 0 6 -5,-0.4 -1,-0.2 -8,-0.1 35,-0.2 0.134 32.2 -87.5 51.5-175.6 -6.3 14.0 -22.6 20 20 A V S S+ 0 0 82 33,-2.6 34,-0.1 32,-0.1 -1,-0.1 0.912 119.8 25.6 -91.5 -62.4 -3.3 16.2 -21.6 21 21 A P S S- 0 0 52 0, 0.0 33,-0.1 0, 0.0 -2,-0.1 0.911 81.1-177.8 -69.8 -44.7 -1.3 16.6 -24.8 22 22 A N + 0 0 74 31,-0.4 33,-0.1 1,-0.1 32,-0.1 0.901 61.4 59.8 40.0 92.8 -4.1 16.0 -27.2 23 23 A G S S+ 0 0 71 1,-0.3 -1,-0.1 31,-0.3 31,-0.0 0.582 78.4 105.7 131.9 33.9 -2.4 16.2 -30.6 24 24 A I S > S- 0 0 73 30,-0.3 3,-1.0 0, 0.0 -1,-0.3 -0.901 80.4-104.7-135.7 164.2 0.2 13.5 -30.7 25 25 A P T >> S+ 0 0 90 0, 0.0 3,-1.8 0, 0.0 4,-0.6 0.344 87.8 111.1 -69.8 9.4 0.8 10.1 -32.3 26 26 A A H >> + 0 0 11 1,-0.3 4,-2.8 2,-0.2 3,-0.7 0.725 57.1 80.5 -56.7 -20.9 0.1 8.6 -28.9 27 27 A E H <> S+ 0 0 100 -3,-1.0 4,-1.2 1,-0.3 -1,-0.3 0.874 89.5 51.4 -53.9 -39.8 -3.1 7.3 -30.4 28 28 A D H <4 S+ 0 0 87 -3,-1.8 4,-0.5 1,-0.2 -1,-0.3 0.798 111.3 48.4 -68.4 -29.0 -1.1 4.4 -31.9 29 29 A S H XX S+ 0 0 64 -3,-0.7 4,-2.2 -4,-0.6 3,-1.1 0.889 104.9 56.4 -77.9 -42.0 0.4 3.7 -28.5 30 30 A E H 3X S+ 0 0 10 -4,-2.8 4,-3.4 1,-0.3 5,-0.3 0.806 93.1 72.8 -59.7 -29.7 -3.0 3.7 -26.7 31 31 A Q H 3X S+ 0 0 159 -4,-1.2 4,-0.6 -5,-0.2 -1,-0.3 0.888 110.7 28.2 -52.2 -42.9 -4.1 1.0 -29.1 32 32 A L H <> S+ 0 0 120 -3,-1.1 4,-1.7 -4,-0.5 -1,-0.2 0.795 117.6 59.6 -88.5 -33.0 -1.9 -1.5 -27.2 33 33 A A H X S+ 0 0 8 -4,-2.2 4,-1.6 1,-0.2 -2,-0.2 0.902 101.3 55.1 -61.8 -42.7 -2.1 0.3 -23.9 34 34 A S H < S+ 0 0 46 -4,-3.4 4,-0.2 1,-0.2 -1,-0.2 0.904 111.6 43.7 -58.1 -43.5 -5.9 -0.1 -23.7 35 35 A G H >< S+ 0 0 56 -4,-0.6 3,-0.7 -5,-0.3 -1,-0.2 0.780 111.7 54.0 -73.4 -26.9 -5.6 -3.8 -24.2 36 36 A Q H >< S+ 0 0 123 -4,-1.7 3,-1.6 1,-0.2 -1,-0.2 0.717 91.1 74.4 -78.6 -22.1 -2.7 -4.1 -21.7 37 37 A E T 3< + 0 0 64 -4,-1.6 -1,-0.2 1,-0.3 -2,-0.2 0.673 69.2 91.5 -64.1 -15.9 -4.8 -2.3 -19.1 38 38 A A T < + 0 0 71 -3,-0.7 -1,-0.3 -4,-0.2 -2,-0.1 0.675 55.1 141.8 -53.6 -15.7 -6.7 -5.6 -18.8 39 39 A G < - 0 0 21 -3,-1.6 5,-0.2 1,-0.2 6,-0.1 0.000 49.9-147.5 -33.6 111.2 -4.1 -6.4 -16.1 40 40 A D S S+ 0 0 172 3,-0.1 -1,-0.2 4,-0.1 -3,-0.0 0.925 79.5 64.3 -50.9 -50.1 -6.1 -8.2 -13.5 41 41 A P S > S- 0 0 74 0, 0.0 3,-0.6 0, 0.0 4,-0.1 -0.112 92.0-116.7 -69.7 171.2 -3.9 -6.7 -10.7 42 42 A G G > S+ 0 0 36 1,-0.2 3,-1.7 2,-0.2 -39,-0.1 0.647 101.7 83.8 -84.8 -15.9 -3.7 -3.0 -9.8 43 43 A C G 3 S+ 0 0 75 1,-0.3 4,-0.2 2,-0.2 -1,-0.2 0.705 89.9 54.6 -59.1 -18.7 0.0 -2.9 -10.8 44 44 A L G <> S+ 0 0 30 -3,-0.6 4,-1.9 -5,-0.2 3,-0.4 0.654 90.0 75.1 -88.3 -18.3 -1.2 -2.4 -14.3 45 45 A K H <> S+ 0 0 41 -3,-1.7 4,-2.6 1,-0.2 5,-0.2 0.920 96.8 47.0 -58.8 -45.6 -3.4 0.6 -13.4 46 46 A P H > S+ 0 0 17 0, 0.0 4,-0.7 0, 0.0 -1,-0.2 0.702 112.9 50.9 -69.8 -20.0 -0.3 2.8 -13.1 47 47 A L H > S+ 0 0 88 -3,-0.4 4,-0.6 -4,-0.2 -2,-0.2 0.740 113.7 43.0 -88.3 -26.6 1.0 1.4 -16.4 48 48 A H H >X S+ 0 0 32 -4,-1.9 4,-1.4 2,-0.2 3,-0.6 0.875 106.7 58.9 -85.1 -42.6 -2.3 2.1 -18.2 49 49 A E H 3X S+ 0 0 17 -4,-2.6 4,-1.9 1,-0.2 3,-0.3 0.886 99.4 60.2 -53.7 -41.8 -3.0 5.6 -16.8 50 50 A K H 3X S+ 0 0 128 -4,-0.7 4,-0.7 1,-0.3 -1,-0.2 0.901 109.6 41.2 -53.7 -44.3 0.3 6.8 -18.2 51 51 A D H < S+ 0 0 52 -4,-1.9 -33,-2.6 1,-0.2 3,-0.6 0.878 114.6 38.7 -59.5 -39.1 -3.0 10.9 -20.5 54 54 A S H >< S+ 0 0 30 -4,-0.7 3,-1.6 1,-0.2 -31,-0.3 0.690 94.5 84.7 -84.4 -20.6 -1.6 10.7 -24.0 55 55 A G T >X + 0 0 0 -4,-1.2 4,-2.5 1,-0.3 3,-1.7 0.595 58.9 102.7 -57.8 -8.1 -4.7 8.8 -25.2 56 56 A G H <> S+ 0 0 1 -3,-0.6 4,-3.2 1,-0.3 -1,-0.3 0.807 70.8 63.9 -45.4 -33.7 -6.3 12.3 -25.6 57 57 A G H <4 S+ 0 0 32 -3,-1.6 -1,-0.3 1,-0.2 -2,-0.2 0.891 111.8 33.2 -59.9 -41.1 -5.6 11.9 -29.3 58 58 A K H <4 S+ 0 0 123 -3,-1.7 -2,-0.2 -4,-0.2 -1,-0.2 0.783 119.2 53.3 -84.8 -30.3 -8.0 9.0 -29.6 59 59 A D H < 0 0 31 -4,-2.5 -2,-0.2 -45,-0.0 -3,-0.2 0.888 360.0 360.0 -71.5 -40.6 -10.3 10.3 -26.9 60 60 A G < 0 0 83 -4,-3.2 -42,-0.1 -5,-0.3 -43,-0.1 -0.272 360.0 360.0 -72.3 360.0 -10.8 13.7 -28.5