==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 09-OCT-08 2K9E . COMPND 2 MOLECULE: POTASSIUM CHANNEL TOXIN SHK; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.A.GALEA . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3376.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 52.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 22.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 0 A X 0 0 550 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -65.8 -3.3 11.2 -12.8 2 1 A R - 0 0 221 1,-0.2 3,-0.1 3,-0.1 2,-0.0 -0.746 360.0 -67.7-152.8-160.7 -9.7 5.9 -2.4 3 2 A S S S- 0 0 94 1,-0.1 2,-0.8 0, 0.0 -1,-0.2 0.074 77.6 -47.7 -92.4-153.5 -8.3 4.9 1.0 4 3 A a S S+ 0 0 46 32,-0.1 2,-0.3 25,-0.0 -1,-0.1 -0.737 80.1 133.4 -86.6 109.2 -6.0 2.1 1.9 5 4 A I - 0 0 92 -2,-0.8 2,-0.1 22,-0.1 24,-0.1 -0.976 44.7-129.9-157.7 141.6 -7.1 -1.1 0.2 6 5 A D - 0 0 32 -2,-0.3 22,-0.1 2,-0.1 23,-0.1 -0.309 4.5-147.9 -85.6 173.4 -5.5 -3.9 -1.8 7 6 A T S S+ 0 0 121 -2,-0.1 -1,-0.1 20,-0.1 21,-0.1 0.465 80.3 65.5-116.5 -11.6 -6.7 -5.3 -5.2 8 7 A I S S- 0 0 48 20,-0.2 4,-0.2 1,-0.0 5,-0.1 -0.879 105.7 -79.3-114.9 146.8 -5.5 -8.9 -4.5 9 8 A P > - 0 0 82 0, 0.0 3,-2.9 0, 0.0 4,-0.3 -0.171 37.9-135.6 -44.5 106.6 -6.9 -11.4 -1.9 10 9 A K G > S+ 0 0 140 1,-0.3 3,-1.6 2,-0.2 18,-0.0 0.758 101.5 80.8 -37.8 -26.8 -5.2 -10.2 1.3 11 10 A S G 3 S+ 0 0 116 1,-0.3 -1,-0.3 3,-0.0 3,-0.0 0.466 85.4 60.3 -63.2 2.2 -4.7 -14.0 1.7 12 11 A R G < S+ 0 0 157 -3,-2.9 2,-1.2 -4,-0.2 -1,-0.3 0.702 78.1 92.3-100.4 -26.7 -1.7 -13.4 -0.7 13 12 A b < + 0 0 23 -3,-1.6 2,-0.2 -4,-0.3 -1,-0.1 -0.570 60.3 174.8 -73.3 97.4 0.2 -11.0 1.5 14 13 A T >> - 0 0 58 -2,-1.2 4,-2.5 1,-0.1 3,-0.8 -0.669 50.5-104.1-103.9 160.3 2.5 -13.3 3.4 15 14 A A T 34 S+ 0 0 84 1,-0.3 -1,-0.1 -2,-0.2 -2,-0.1 0.634 126.3 54.4 -55.9 -9.7 5.3 -12.5 5.8 16 15 A F T >> S+ 0 0 98 2,-0.1 4,-2.8 3,-0.1 3,-1.0 0.827 106.4 46.3 -91.8 -38.9 7.5 -13.4 2.8 17 16 A Q H <> S+ 0 0 44 -3,-0.8 4,-1.2 1,-0.3 7,-0.4 0.837 108.7 56.7 -71.5 -33.3 5.9 -11.0 0.3 18 17 A c H 3< S+ 0 0 28 -4,-2.5 -1,-0.3 1,-0.2 -2,-0.1 0.343 118.8 34.0 -79.6 7.5 6.0 -8.2 2.8 19 18 A K H <4 S+ 0 0 158 -3,-1.0 -2,-0.2 -5,-0.2 -1,-0.2 0.578 129.8 29.3-128.8 -34.4 9.8 -8.8 3.0 20 19 A H H < S+ 0 0 137 -4,-2.8 2,-0.7 1,-0.2 -3,-0.2 0.790 117.4 56.1 -98.4 -37.3 10.8 -9.9 -0.5 21 20 A S >X - 0 0 12 -4,-1.2 4,-0.6 -5,-0.5 3,-0.5 -0.873 57.6-177.3-102.9 113.1 8.1 -8.0 -2.5 22 21 A X H >> S+ 0 0 105 -2,-0.7 3,-1.5 1,-0.2 4,-0.6 0.903 79.3 70.5 -73.6 -42.2 8.1 -4.3 -1.8 23 22 A K H 34>S+ 0 0 101 1,-0.3 5,-1.9 2,-0.2 3,-0.3 0.720 96.4 59.1 -47.9 -18.3 5.2 -3.5 -4.1 24 23 A Y H X4>S+ 0 0 27 -3,-0.5 5,-1.8 -7,-0.4 3,-0.6 0.891 102.6 47.8 -79.0 -41.0 3.3 -5.4 -1.3 25 24 A R H <<5S+ 0 0 83 -3,-1.5 -1,-0.2 -4,-0.6 -2,-0.2 0.346 131.6 21.7 -80.9 7.1 4.3 -2.9 1.4 26 25 A L T 3<5S+ 0 0 98 -4,-0.6 -1,-0.2 -3,-0.3 -2,-0.2 0.139 135.1 23.6-161.7 29.2 3.3 -0.0 -0.8 27 26 A S T < 5S+ 0 0 58 -3,-0.6 -3,-0.2 -4,-0.2 3,-0.2 0.257 131.6 12.6-158.4 -57.4 0.9 -1.3 -3.5 28 27 A F T S+ 0 0 72 -2,-0.4 3,-1.3 4,-0.1 -1,-0.1 0.108 114.4 66.1-177.4 -47.0 -2.6 -2.3 5.6 32 31 A T T 3 S+ 0 0 80 1,-0.3 -2,-0.1 2,-0.1 -7,-0.1 0.956 106.7 46.1 -59.2 -51.4 -1.4 -5.7 6.5 33 32 A c T 3 S- 0 0 38 -4,-0.4 -1,-0.3 -9,-0.2 -3,-0.1 0.399 116.1-121.5 -71.7 5.7 2.2 -4.6 6.6 34 33 A G S < S+ 0 0 60 -3,-1.3 -2,-0.1 1,-0.1 -1,-0.1 0.843 72.9 136.7 55.9 33.4 0.9 -1.7 8.6 35 34 A T 0 0 71 -6,-0.4 -1,-0.1 1,-0.2 -5,-0.1 0.602 360.0 360.0 -84.7 -12.0 2.3 0.5 5.9 36 35 A a 0 0 97 -7,-0.1 -1,-0.2 -5,-0.1 -32,-0.1 -0.330 360.0 360.0 -99.6 360.0 -0.9 2.6 5.9