==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 20-OCT-08 2K9O . COMPND 2 MOLECULE: VM24 SCORPION TOXIN; . SOURCE 2 SYNTHETIC: YES . AUTHOR F.DEL RIO-PORTILLA,R.HERNANDEZ-LOPEZ,L.POSSANI-POSTAY, . 36 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2942.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 52.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 22.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 156 0, 0.0 2,-0.3 0, 0.0 29,-0.1 0.000 360.0 360.0 360.0 147.6 -7.8 -9.2 4.7 2 2 A A - 0 0 43 30,-0.0 30,-0.2 2,-0.0 24,-0.0 -0.960 360.0 -94.3-151.6 174.2 -4.7 -7.1 3.8 3 3 A A S S+ 0 0 82 28,-0.8 2,-0.3 -2,-0.3 29,-0.1 0.555 95.3 15.1 -74.9 -12.1 -2.1 -4.8 5.5 4 4 A I E S-A 31 0A 22 27,-0.7 27,-1.0 4,-0.0 2,-0.6 -0.981 76.8-101.1-149.3 163.0 -3.7 -1.3 5.0 5 5 A S E > -A 30 0A 57 -2,-0.3 3,-1.0 25,-0.2 25,-0.3 -0.778 29.2-158.0 -83.5 116.2 -6.9 0.5 4.0 6 6 A a T 3 S+ 0 0 17 23,-2.6 3,-0.3 -2,-0.6 24,-0.2 0.916 83.7 66.2 -65.1 -37.4 -6.3 1.5 0.3 7 7 A V T 3 S+ 0 0 105 22,-0.6 -1,-0.2 1,-0.2 4,-0.1 0.475 74.1 98.3 -61.0 -14.7 -8.9 4.3 0.4 8 8 A G S < S- 0 0 49 -3,-1.0 -1,-0.2 3,-0.2 -2,-0.1 0.920 104.0 -68.5 -48.7 -78.1 -7.0 6.6 2.9 9 9 A S S S+ 0 0 121 1,-0.8 2,-0.1 -3,-0.3 3,-0.1 0.296 116.6 39.0-148.6 -60.6 -5.2 9.2 0.9 10 10 A P S S- 0 0 56 0, 0.0 -1,-0.8 0, 0.0 -2,-0.1 -0.476 88.7-112.9 -80.7 170.4 -2.3 7.6 -1.2 11 11 A E - 0 0 160 -2,-0.1 -3,-0.2 -3,-0.1 -2,-0.1 0.998 67.7 -64.0 -65.8 -70.4 -3.0 4.1 -2.8 12 12 A b S >> S+ 0 0 5 12,-0.1 3,-2.4 -5,-0.1 4,-1.1 0.553 107.5 66.8-150.6 -68.7 -0.6 1.8 -0.9 13 13 A P H 3> S+ 0 0 38 0, 0.0 8,-2.3 0, 0.0 4,-0.6 0.791 104.5 49.3 -54.1 -38.5 3.3 1.7 -0.6 14 14 A P H 34 S+ 0 0 74 0, 0.0 6,-0.2 0, 0.0 8,-0.0 0.468 111.4 53.4 -77.4 -0.9 3.8 5.1 1.3 15 15 A K H <4 S+ 0 0 62 -3,-2.4 3,-0.1 4,-0.1 -10,-0.1 0.652 94.0 66.2-102.3 -23.7 1.0 4.0 3.8 16 16 A c H < S- 0 0 41 -4,-1.1 2,-0.3 -3,-0.5 -1,-0.1 0.782 124.4 -8.5 -67.8 -30.1 2.6 0.5 4.7 17 17 A R S >< S- 0 0 116 -4,-0.6 3,-1.2 1,-0.1 -1,-0.2 -0.944 76.4-101.5-159.8 165.2 5.6 2.5 6.4 18 18 A A T 3 S+ 0 0 102 1,-0.3 -1,-0.1 -2,-0.3 3,-0.0 0.874 121.9 39.2 -60.9 -48.8 6.8 6.1 6.6 19 19 A Q T 3 S- 0 0 157 1,-0.1 -1,-0.3 -3,-0.1 -4,-0.1 0.420 120.7-116.0 -79.9 0.4 9.7 5.9 4.0 20 20 A G < - 0 0 18 -3,-1.2 -2,-0.1 -6,-0.2 -1,-0.1 0.474 21.9 -89.9 73.9 145.4 7.3 3.7 1.9 21 21 A d - 0 0 16 -8,-2.3 14,-0.1 -4,-0.2 15,-0.1 -0.389 37.6-109.3 -75.8 163.6 7.5 0.1 0.7 22 22 A K S S- 0 0 150 12,-0.5 2,-0.2 1,-0.2 13,-0.2 0.920 89.2 -27.0 -65.5 -46.9 9.1 -1.0 -2.6 23 23 A N E -B 34 0A 85 11,-1.4 11,-2.4 -10,-0.1 2,-0.3 -0.907 61.5-170.0-151.1 178.6 5.8 -1.9 -4.3 24 24 A G E -B 33 0A 17 9,-0.3 2,-0.3 -2,-0.2 9,-0.2 -0.969 16.3-133.1-162.5 172.3 2.2 -3.0 -3.4 25 25 A K E -B 32 0A 115 7,-2.3 7,-2.1 -2,-0.3 2,-0.5 -0.950 13.2-166.9-140.3 119.9 -1.2 -4.3 -4.9 26 26 A a E +B 31 0A 45 -2,-0.3 5,-0.2 5,-0.2 3,-0.1 -0.904 14.7 165.0-107.5 125.1 -4.7 -3.1 -4.0 27 27 A M S S- 0 0 156 3,-0.9 2,-0.3 -2,-0.5 -1,-0.2 0.843 72.6 -6.6-105.0 -62.0 -7.7 -5.1 -5.2 28 28 A N S S- 0 0 112 2,-0.2 -1,-0.2 0, 0.0 2,-0.1 -0.912 123.7 -42.2-147.5 113.0 -10.8 -3.9 -3.2 29 29 A R S S+ 0 0 161 -2,-0.3 -23,-2.6 -3,-0.1 -22,-0.6 0.224 123.3 73.2 47.6 -5.2 -10.4 -1.3 -0.3 30 30 A K E -A 5 0A 87 -25,-0.3 -3,-0.9 -24,-0.2 2,-0.3 -0.758 63.0-153.5-132.1 164.5 -7.2 -3.2 0.9 31 31 A b E -AB 4 26A 1 -27,-1.0 -28,-0.8 -2,-0.2 -27,-0.7 -0.995 12.4-146.8-147.8 145.4 -3.6 -3.8 -0.1 32 32 A K E - B 0 25A 134 -7,-2.1 -7,-2.3 -2,-0.3 2,-0.4 -0.912 26.6-138.4-103.0 131.5 -0.6 -6.2 0.1 33 33 A c E - B 0 24A 27 -2,-0.4 -9,-0.3 -9,-0.2 3,-0.3 -0.787 19.8-149.8 -98.6 136.9 2.9 -4.7 0.2 34 34 A Y E + B 0 23A 87 -11,-2.4 -11,-1.4 -2,-0.4 -12,-0.5 -0.721 63.1 5.2-115.8 154.6 5.8 -6.2 -1.8 35 35 A Y 0 0 187 -2,-0.3 -1,-0.2 -13,-0.2 -13,-0.1 0.744 360.0 360.0 49.8 31.4 9.6 -6.6 -1.6 36 36 A d 0 0 81 -3,-0.3 -1,-0.1 -15,-0.1 -2,-0.1 0.572 360.0 360.0-139.3 360.0 9.3 -4.9 1.9