==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 13-JAN-95 1KAL . COMPND 2 MOLECULE: KALATA B1; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR D.J.CRAIK,D.G.NORMAN . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2117.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 58.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 17.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S > 0 0 68 0, 0.0 3,-3.0 0, 0.0 16,-0.3 0.000 360.0 360.0 360.0 116.9 3.2 3.0 6.6 2 2 A W T 3 + 0 0 176 27,-0.6 18,-0.3 1,-0.3 19,-0.1 0.408 360.0 20.9 -0.5 -70.2 1.9 6.6 6.1 3 3 A P T 3 S+ 0 0 27 0, 0.0 15,-0.6 0, 0.0 14,-0.5 0.494 122.5 48.1 -98.4 -4.0 2.4 6.7 2.3 4 4 A V S < S- 0 0 48 -3,-3.0 2,-0.6 12,-0.3 12,-0.2 -0.943 72.0-120.4-137.7 159.3 2.4 3.0 1.3 5 5 A a + 0 0 0 10,-1.9 8,-1.4 -2,-0.3 7,-0.9 -0.858 43.8 176.7 -97.6 117.0 0.6 -0.3 1.7 6 6 A T E -AB 11 28A 7 22,-2.4 22,-2.5 -2,-0.6 2,-0.5 -0.605 39.1-125.3-117.3 177.1 3.0 -2.9 3.3 7 7 A R E > S-A 10 0A 142 3,-1.3 3,-0.8 20,-0.2 20,-0.1 -0.867 93.1 -41.6-125.6 86.2 2.9 -6.5 4.5 8 8 A N T 3 S- 0 0 149 -2,-0.5 19,-0.0 1,-0.2 -1,-0.0 0.912 133.6 -24.0 53.7 50.6 4.3 -6.0 8.1 9 9 A G T 3 S+ 0 0 58 1,-0.1 -1,-0.2 19,-0.0 -4,-0.0 0.189 119.2 101.2 105.0 -15.3 6.9 -3.5 6.9 10 10 A L E < -A 7 0A 117 -3,-0.8 -3,-1.3 2,-0.0 2,-0.6 -0.888 69.9-133.4-109.7 107.4 7.3 -4.5 3.3 11 11 A P E +A 6 0A 86 0, 0.0 -5,-0.3 0, 0.0 18,-0.0 -0.385 54.6 138.8 -48.7 101.0 5.5 -2.5 0.5 12 12 A V + 0 0 99 -7,-0.9 -6,-0.2 -2,-0.6 15,-0.0 0.319 49.7 70.3-133.8 3.3 4.0 -5.4 -1.4 13 13 A b S S- 0 0 42 -8,-1.4 -7,-0.1 2,-0.2 3,-0.1 0.898 87.0-136.6 -88.3 -46.4 0.5 -4.3 -2.3 14 14 A G S S+ 0 0 75 -9,-0.5 2,-0.2 1,-0.5 -8,-0.1 0.114 70.6 99.4 109.5 -17.3 1.5 -1.7 -5.0 15 15 A E - 0 0 73 -10,-0.1 -10,-1.9 9,-0.0 -1,-0.5 -0.497 62.9-134.6 -96.4 167.2 -0.9 0.9 -3.7 16 16 A T - 0 0 83 -12,-0.2 -12,-0.3 -2,-0.2 7,-0.2 -0.757 13.1-161.3-120.3 166.5 -0.3 3.9 -1.4 17 17 A c > + 0 0 3 -14,-0.5 3,-1.7 -16,-0.3 -13,-0.3 -0.142 33.6 145.4-140.8 42.1 -2.0 5.5 1.6 18 18 A V T 3 S+ 0 0 89 -15,-0.6 -14,-0.1 1,-0.3 -1,-0.1 0.880 78.3 57.3 -47.0 -46.2 -0.6 9.1 1.8 19 19 A G T 3 S- 0 0 85 2,-0.2 -1,-0.3 -16,-0.1 3,-0.1 0.841 132.2 -99.9 -52.2 -34.5 -4.0 10.2 3.1 20 20 A G S < S+ 0 0 39 -3,-1.7 2,-0.3 -18,-0.3 -2,-0.2 0.419 92.1 83.7 122.7 12.6 -3.3 7.6 5.8 21 21 A T - 0 0 100 -19,-0.1 -1,-0.3 -5,-0.1 2,-0.3 -0.992 55.0-151.6-143.3 150.7 -5.4 4.6 4.6 22 22 A a - 0 0 29 -2,-0.3 -5,-0.1 5,-0.1 7,-0.1 -0.783 11.0-148.1-115.1 159.3 -5.1 1.7 2.1 23 23 A N S S+ 0 0 125 -2,-0.3 -6,-0.0 -7,-0.2 -1,-0.0 -0.160 71.6 94.9-119.2 35.8 -7.9 -0.1 0.2 24 24 A T > - 0 0 51 3,-0.2 3,-2.7 -9,-0.0 -1,-0.1 -0.722 69.1-143.0-131.6 83.1 -6.4 -3.5 0.1 25 25 A P T 3 S+ 0 0 139 0, 0.0 3,-0.1 0, 0.0 -2,-0.1 -0.241 92.8 43.4 -38.4 111.2 -7.5 -5.8 3.0 26 26 A G T 3 S+ 0 0 57 1,-0.6 2,-0.3 -20,-0.1 -13,-0.0 -0.123 100.2 80.5 133.4 -32.5 -4.3 -7.7 3.8 27 27 A b < - 0 0 33 -3,-2.7 -1,-0.6 -20,-0.1 2,-0.2 -0.728 63.5-152.2-104.0 154.1 -1.9 -4.8 3.6 28 28 A T B B 6 0A 71 -22,-2.5 -22,-2.4 -2,-0.3 -7,-0.1 -0.599 360.0 360.0-113.9 174.3 -1.3 -2.3 6.4 29 29 A c 0 0 46 -24,-0.2 -27,-0.6 -2,-0.2 -24,-0.2 -0.897 360.0 360.0-117.8 360.0 -0.2 1.3 6.2