==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN 12-NOV-08 2KAP . COMPND 2 MOLECULE: RHO GTPASE-ACTIVATING PROTEIN 7; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.YANG,D.YANG . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4873.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 81.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 34 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K > 0 0 187 0, 0.0 4,-2.6 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -47.3 7.9 7.5 -5.4 2 2 A E H > + 0 0 143 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.834 360.0 54.3 -56.9 -32.4 9.4 3.9 -5.3 3 3 A A H > S+ 0 0 8 2,-0.2 4,-3.0 3,-0.2 -1,-0.2 0.988 111.4 42.4 -57.6 -61.5 6.1 2.7 -3.9 4 4 A C H > S+ 0 0 28 1,-0.2 4,-2.5 2,-0.2 -2,-0.2 0.867 116.2 49.7 -53.9 -42.1 4.0 4.2 -6.8 5 5 A D H X S+ 0 0 104 -4,-2.6 4,-1.8 2,-0.2 -1,-0.2 0.923 114.5 42.6 -67.8 -44.6 6.6 3.1 -9.4 6 6 A W H X S+ 0 0 81 -4,-2.4 4,-2.4 -5,-0.2 5,-0.2 0.906 113.2 53.9 -66.6 -40.2 6.7 -0.6 -8.1 7 7 A L H X>S+ 0 0 0 -4,-3.0 5,-3.1 -5,-0.2 4,-1.4 0.915 108.5 50.0 -59.5 -42.0 2.9 -0.5 -7.8 8 8 A R H <5S+ 0 0 176 -4,-2.5 -1,-0.2 3,-0.2 -2,-0.2 0.911 110.5 50.9 -57.0 -44.6 2.7 0.6 -11.5 9 9 A A H <5S+ 0 0 86 -4,-1.8 -2,-0.2 1,-0.2 -1,-0.2 0.863 109.8 46.6 -69.5 -39.0 5.0 -2.3 -12.4 10 10 A T H <5S- 0 0 78 -4,-2.4 -1,-0.2 -5,-0.1 -2,-0.2 0.775 123.9-106.0 -70.0 -24.8 3.0 -5.0 -10.5 11 11 A G T <5S+ 0 0 49 -4,-1.4 -3,-0.2 -5,-0.2 3,-0.2 0.709 81.4 126.6 106.6 29.7 -0.1 -3.5 -12.2 12 12 A F >>< + 0 0 52 -5,-3.1 4,-1.4 1,-0.1 3,-0.9 -0.586 12.4 154.1-115.1 62.6 -1.8 -1.6 -9.2 13 13 A P H 3> S+ 0 0 71 0, 0.0 4,-2.7 0, 0.0 5,-0.2 0.835 74.0 67.2 -62.7 -27.0 -2.3 2.0 -10.5 14 14 A Q H 3> S+ 0 0 118 2,-0.2 4,-1.6 1,-0.2 -2,-0.1 0.883 102.1 44.6 -53.0 -43.2 -5.2 2.1 -7.9 15 15 A Y H <> S+ 0 0 15 -3,-0.9 4,-0.8 2,-0.2 -1,-0.2 0.815 110.8 53.2 -79.4 -29.0 -2.6 1.8 -5.0 16 16 A A H >X S+ 0 0 11 -4,-1.4 3,-0.8 2,-0.2 4,-0.5 0.938 111.4 46.6 -65.3 -44.2 -0.3 4.4 -6.6 17 17 A Q H >X S+ 0 0 117 -4,-2.7 3,-1.1 1,-0.2 4,-0.5 0.855 101.2 68.0 -62.0 -35.1 -3.4 6.8 -6.8 18 18 A L H >< S+ 0 0 48 -4,-1.6 3,-1.1 1,-0.2 -1,-0.2 0.809 88.9 65.2 -57.0 -29.9 -4.1 5.8 -3.1 19 19 A Y H X< S+ 0 0 65 -4,-0.8 3,-0.8 -3,-0.8 -1,-0.2 0.879 94.6 57.6 -58.9 -38.2 -0.9 7.7 -2.1 20 20 A E H << S+ 0 0 135 -3,-1.1 -1,-0.2 -4,-0.5 -2,-0.2 0.684 94.8 68.1 -68.3 -16.1 -2.6 11.0 -3.3 21 21 A D T X< + 0 0 73 -3,-1.1 3,-1.4 -4,-0.5 -1,-0.3 -0.165 59.7 140.9 -92.7 34.4 -5.3 10.2 -0.7 22 22 A F T < + 0 0 109 -3,-0.8 -1,-0.2 1,-0.3 -2,-0.1 0.371 41.6 98.5 -59.0 4.6 -2.8 10.8 2.2 23 23 A L T 3 S+ 0 0 126 1,-0.2 -1,-0.3 -3,-0.1 -2,-0.1 0.735 97.3 12.1 -67.3 -22.2 -5.7 12.5 4.1 24 24 A F S < S- 0 0 121 -3,-1.4 2,-0.2 34,-0.0 -1,-0.2 -0.983 78.6-119.1-149.2 147.4 -6.2 9.2 6.0 25 25 A P - 0 0 59 0, 0.0 2,-0.2 0, 0.0 26,-0.1 -0.596 37.1-126.5 -79.4 152.0 -4.2 5.9 6.4 26 26 A I - 0 0 36 -2,-0.2 2,-1.6 24,-0.2 3,-0.2 -0.539 22.7 -95.0-100.5 161.3 -6.0 2.6 5.2 27 27 A D >> - 0 0 126 1,-0.2 4,-2.1 -2,-0.2 3,-0.6 -0.595 36.4-176.3 -70.9 87.8 -6.8 -0.8 6.7 28 28 A I H 3> S+ 0 0 24 -2,-1.6 4,-2.5 1,-0.2 -1,-0.2 0.901 85.0 58.7 -48.1 -42.5 -3.8 -2.8 5.5 29 29 A S H 3> S+ 0 0 76 2,-0.2 4,-0.7 1,-0.2 -1,-0.2 0.849 103.6 49.7 -61.5 -35.1 -5.5 -5.8 7.1 30 30 A L H X> S+ 0 0 93 -3,-0.6 4,-1.5 2,-0.2 3,-1.3 0.942 109.4 51.2 -68.4 -44.7 -8.6 -5.3 4.8 31 31 A V H 3X S+ 0 0 10 -4,-2.1 4,-1.3 1,-0.3 3,-0.3 0.915 102.6 62.0 -55.0 -41.5 -6.3 -5.1 1.8 32 32 A K H 3< S+ 0 0 54 -4,-2.5 -1,-0.3 1,-0.2 -2,-0.2 0.715 103.7 48.8 -58.9 -24.7 -4.7 -8.4 3.1 33 33 A R H X< S+ 0 0 181 -3,-1.3 3,-1.0 -4,-0.7 -1,-0.2 0.841 105.1 57.5 -79.0 -36.2 -8.2 -10.1 2.6 34 34 A E H 3< S+ 0 0 145 -4,-1.5 -2,-0.2 -3,-0.3 -1,-0.1 0.775 124.3 22.5 -66.4 -26.0 -8.6 -8.7 -1.0 35 35 A H T >< S+ 0 0 9 -4,-1.3 3,-1.7 1,-0.1 -1,-0.2 -0.079 77.3 134.4-129.7 31.5 -5.3 -10.5 -2.1 36 36 A D T < + 0 0 125 -3,-1.0 -2,-0.1 1,-0.3 -3,-0.1 0.610 56.4 85.0 -58.0 -11.6 -5.0 -13.3 0.6 37 37 A F T 3 S+ 0 0 173 -4,-0.1 -1,-0.3 -3,-0.1 2,-0.2 0.728 81.1 70.8 -60.8 -28.6 -4.2 -15.6 -2.3 38 38 A L S < S- 0 0 48 -3,-1.7 2,-0.1 1,-0.1 -3,-0.1 -0.506 89.8 -95.2 -97.9 160.8 -0.4 -14.7 -2.3 39 39 A D >> - 0 0 131 -2,-0.2 4,-1.7 1,-0.1 3,-1.3 -0.340 34.1-106.8 -73.2 156.0 2.3 -15.5 0.3 40 40 A R H 3> S+ 0 0 189 1,-0.3 4,-2.6 2,-0.2 5,-0.1 0.663 114.9 72.4 -58.1 -14.8 3.5 -13.2 3.2 41 41 A D H 3> S+ 0 0 135 2,-0.2 4,-1.5 1,-0.2 -1,-0.3 0.934 105.2 36.2 -61.0 -47.0 6.7 -12.5 1.2 42 42 A A H <> S+ 0 0 42 -3,-1.3 4,-2.6 2,-0.2 -2,-0.2 0.803 113.8 58.6 -80.0 -25.8 4.6 -10.3 -1.2 43 43 A I H X S+ 0 0 14 -4,-1.7 4,-3.3 2,-0.2 5,-0.3 0.944 104.1 52.6 -59.1 -46.8 2.5 -9.1 1.7 44 44 A E H X S+ 0 0 143 -4,-2.6 4,-2.4 2,-0.2 -2,-0.2 0.920 113.0 42.9 -58.8 -44.4 5.8 -7.8 3.3 45 45 A A H X S+ 0 0 22 -4,-1.5 4,-2.3 2,-0.2 -1,-0.2 0.964 118.1 44.5 -63.3 -51.2 6.6 -5.8 0.1 46 46 A L H X S+ 0 0 6 -4,-2.6 4,-3.1 1,-0.2 5,-0.3 0.933 115.1 48.5 -60.9 -47.3 3.0 -4.5 -0.4 47 47 A C H X S+ 0 0 17 -4,-3.3 4,-2.8 2,-0.2 -1,-0.2 0.904 109.9 52.7 -57.0 -45.5 2.7 -3.6 3.3 48 48 A R H X S+ 0 0 152 -4,-2.4 4,-1.5 -5,-0.3 -2,-0.2 0.924 115.1 41.1 -57.8 -46.3 6.1 -1.8 3.2 49 49 A R H X S+ 0 0 57 -4,-2.3 4,-1.6 2,-0.2 -2,-0.2 0.937 118.7 44.1 -69.0 -47.5 5.0 0.3 0.2 50 50 A L H X S+ 0 0 1 -4,-3.1 4,-2.5 1,-0.2 -24,-0.2 0.838 111.9 54.7 -68.2 -30.4 1.4 0.9 1.5 51 51 A N H X S+ 0 0 76 -4,-2.8 4,-3.0 -5,-0.3 -1,-0.2 0.823 103.1 56.1 -71.3 -29.4 2.9 1.7 5.0 52 52 A T H X S+ 0 0 37 -4,-1.5 4,-1.9 2,-0.2 -2,-0.2 0.925 109.8 46.4 -60.9 -42.3 5.1 4.3 3.3 53 53 A L H X S+ 0 0 4 -4,-1.6 4,-2.0 2,-0.2 -2,-0.2 0.945 116.0 43.7 -64.5 -46.8 1.9 5.9 2.0 54 54 A N H X S+ 0 0 17 -4,-2.5 4,-2.2 2,-0.2 -2,-0.2 0.909 110.5 56.5 -62.8 -42.5 0.2 5.6 5.5 55 55 A K H < S+ 0 0 141 -4,-3.0 -2,-0.2 1,-0.2 -1,-0.2 0.870 109.6 45.8 -56.7 -40.3 3.5 6.9 7.2 56 56 A C H >< S+ 0 0 52 -4,-1.9 3,-0.7 1,-0.2 -1,-0.2 0.880 111.8 52.1 -71.6 -37.2 3.3 10.0 5.0 57 57 A A H 3< S+ 0 0 24 -4,-2.0 -2,-0.2 1,-0.2 -1,-0.2 0.848 126.0 24.1 -63.8 -36.6 -0.5 10.4 5.8 58 58 A V T 3< S+ 0 0 66 -4,-2.2 2,-2.4 -5,-0.1 -1,-0.2 -0.415 74.9 170.2-132.5 53.0 0.2 10.2 9.7 59 59 A M < 0 0 152 -3,-0.7 -3,-0.1 1,-0.2 -4,-0.1 -0.366 360.0 360.0 -67.3 62.8 3.9 11.4 10.0 60 60 A K 0 0 235 -2,-2.4 -1,-0.2 -5,-0.1 -5,-0.0 0.879 360.0 360.0 -52.7 360.0 4.0 11.7 13.8