==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CYTOTOXIN 22-JUL-96 1KBT . COMPND 2 MOLECULE: CTX IV; . SOURCE 2 ORGANISM_SCIENTIFIC: NAJA ATRA; . AUTHOR J.Y.JENG,T.K.S.KUMAR,G.JAYARAMAN,C.YU . 60 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4454.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32 53.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 17 28.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 11.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 165 0, 0.0 13,-0.4 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 171.6 -11.0 -7.3 5.5 2 2 A K - 0 0 97 55,-0.3 2,-0.6 11,-0.2 57,-0.5 -0.820 360.0-102.3-140.7-177.2 -10.0 -4.6 3.1 3 3 A a B -AB 12 58A 3 9,-1.4 9,-2.5 -2,-0.2 55,-0.2 -0.933 20.4-162.8-114.4 111.9 -7.6 -1.6 2.9 4 4 A N S S+ 0 0 80 53,-0.8 2,-0.3 -2,-0.6 54,-0.1 0.298 74.6 40.7 -78.5 16.5 -9.4 1.7 3.3 5 5 A K + 0 0 86 53,-0.3 6,-0.3 7,-0.2 7,-0.1 -0.998 39.9 151.9-158.6 156.7 -6.5 3.6 1.8 6 6 A L S S+ 0 0 9 4,-0.8 28,-0.4 1,-0.7 5,-0.1 0.320 80.8 7.9-152.0 -44.4 -3.9 3.4 -1.1 7 7 A V S > S- 0 0 30 3,-0.2 -1,-0.7 26,-0.1 3,-0.6 -0.489 100.3 -75.0-128.0-162.8 -3.0 6.9 -2.0 8 8 A P T 3 S+ 0 0 88 0, 0.0 27,-0.0 0, 0.0 0, 0.0 0.770 132.1 18.7 -74.1 -23.8 -3.9 10.3 -0.3 9 9 A L T 3 S+ 0 0 125 2,-0.0 2,-0.3 -4,-0.0 -4,-0.1 -0.066 109.7 91.8-135.3 36.4 -7.5 10.2 -1.6 10 10 A F < + 0 0 91 -3,-0.6 -4,-0.8 2,-0.0 2,-0.3 -0.878 40.2 176.4-129.7 164.3 -8.0 6.5 -2.6 11 11 A Y + 0 0 168 -2,-0.3 2,-0.3 -6,-0.3 -7,-0.2 -0.980 5.9 168.3-160.6 150.6 -9.4 3.3 -0.9 12 12 A K B -A 3 0A 117 -9,-2.5 -9,-1.4 -2,-0.3 -7,-0.2 -0.985 20.7-132.8-160.1 169.4 -10.0 -0.3 -2.0 13 13 A T - 0 0 102 -2,-0.3 -11,-0.2 -11,-0.2 25,-0.1 -0.537 16.8-139.7-118.2-172.8 -10.9 -3.8 -0.8 14 14 A b - 0 0 40 -13,-0.4 7,-0.0 -2,-0.2 45,-0.0 -0.966 16.0-109.3-148.0 163.6 -9.5 -7.3 -1.5 15 15 A P - 0 0 84 0, 0.0 3,-0.3 0, 0.0 -1,-0.1 0.085 41.6 -97.5 -78.3-166.8 -10.8 -10.9 -2.0 16 16 A A S S+ 0 0 110 1,-0.2 -2,-0.0 0, 0.0 0, 0.0 0.259 113.8 70.2-101.1 13.0 -10.3 -13.8 0.5 17 17 A G S S+ 0 0 62 2,-0.0 -1,-0.2 0, 0.0 2,-0.0 0.567 89.1 69.9-103.4 -11.5 -7.2 -15.1 -1.4 18 18 A K - 0 0 95 -3,-0.3 22,-0.2 1,-0.1 3,-0.1 -0.088 66.1-151.9 -90.0-164.4 -4.9 -12.3 -0.4 19 19 A N - 0 0 93 20,-1.8 21,-0.2 1,-0.4 -1,-0.1 0.471 58.6 -16.8-135.4 -71.3 -3.5 -11.5 3.1 20 20 A L E -C 39 0B 21 19,-1.4 19,-1.2 40,-0.0 -1,-0.4 -0.245 63.3-113.2-122.4-147.8 -2.7 -7.9 4.0 21 21 A a E -CD 38 54B 2 33,-1.9 33,-2.4 17,-0.3 2,-0.3 -0.963 18.4-167.4-149.2 164.9 -2.1 -4.6 2.0 22 22 A Y E -CD 37 53B 39 15,-2.2 15,-1.7 -2,-0.3 2,-0.7 -0.877 21.9-132.4-161.2 127.4 0.8 -2.2 1.3 23 23 A K E -CD 36 52B 74 29,-1.8 29,-2.1 -2,-0.3 2,-0.7 -0.681 26.1-152.0 -81.9 115.9 1.1 1.3 -0.1 24 24 A M E +CD 35 51B 40 -2,-0.7 11,-1.6 11,-0.7 27,-0.2 -0.779 29.3 154.6 -91.3 119.1 3.9 1.1 -2.7 25 25 A F E - D 0 50B 17 25,-1.3 25,-0.6 -2,-0.7 2,-0.3 -0.365 37.6 -97.7-122.7-155.4 5.6 4.5 -3.1 26 26 A M E - D 0 49B 46 6,-0.3 2,-1.2 23,-0.3 23,-0.2 -0.822 30.0-106.2-126.5 168.0 9.0 5.7 -4.3 27 27 A V S S- 0 0 70 21,-0.7 5,-0.0 -2,-0.3 22,-0.0 -0.670 93.3 -44.2 -96.4 85.4 12.2 6.8 -2.5 28 28 A S S S+ 0 0 112 -2,-1.2 -1,-0.2 3,-0.1 4,-0.0 0.633 111.9 120.2 69.8 8.4 12.2 10.6 -2.9 29 29 A N S S- 0 0 118 19,-0.1 -1,-0.1 3,-0.1 -2,-0.0 0.984 91.5 -7.7 -69.8 -56.4 11.2 9.9 -6.6 30 30 A L S S- 0 0 101 2,-0.0 4,-0.1 3,-0.0 -3,-0.0 0.794 111.3 -74.8-105.1 -73.8 7.9 11.8 -6.5 31 31 A T S S- 0 0 111 2,-0.2 3,-0.1 -5,-0.0 -3,-0.1 0.322 72.4 -73.9-159.8 -42.0 7.0 13.0 -3.0 32 32 A V S S+ 0 0 83 1,-0.6 -6,-0.3 -5,-0.0 2,-0.2 -0.104 103.7 79.9 166.2 -53.7 5.8 10.0 -0.8 33 33 A P + 0 0 48 0, 0.0 -1,-0.6 0, 0.0 -2,-0.2 -0.558 44.1 129.8 -79.9 140.4 2.2 9.0 -1.9 34 34 A V - 0 0 30 -28,-0.4 2,-0.3 1,-0.3 -9,-0.2 0.243 61.9 -43.2-153.4 -69.7 1.9 6.8 -5.0 35 35 A K E -C 24 0B 138 -11,-1.6 -11,-0.7 -28,-0.1 2,-0.3 -0.929 39.9-150.2-160.3-175.7 -0.2 3.6 -4.9 36 36 A R E +C 23 0B 23 -13,-0.3 -13,-0.3 -2,-0.3 2,-0.3 -0.985 13.2 171.2-160.1 163.7 -1.1 0.5 -2.8 37 37 A G E -C 22 0B 21 -15,-1.7 -15,-2.2 -2,-0.3 -25,-0.1 -0.888 38.3 -71.5-160.0-169.4 -2.2 -3.1 -3.3 38 38 A b E -C 21 0B 28 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.3 -0.227 43.8-159.3 -87.2-176.5 -2.8 -6.4 -1.5 39 39 A I E -C 20 0B 14 -19,-1.2 -20,-1.8 1,-0.1 -19,-1.4 -0.996 27.1-160.5-160.0 161.5 -0.1 -8.7 -0.2 40 40 A D S S+ 0 0 101 1,-0.4 2,-0.3 -2,-0.3 -1,-0.1 0.603 85.0 6.0-118.2 -26.2 0.6 -12.3 0.9 41 41 A V - 0 0 107 -21,-0.0 -1,-0.4 -22,-0.0 -22,-0.1 -0.993 57.7-148.6-155.4 150.8 3.8 -11.7 3.0 42 42 A c + 0 0 50 -2,-0.3 3,-0.1 -3,-0.1 -3,-0.0 -0.752 31.5 151.8-129.8 89.7 5.7 -8.7 4.3 43 43 A P - 0 0 104 0, 0.0 2,-0.2 0, 0.0 -1,-0.1 0.919 61.3 -42.0 -78.7 -91.8 9.5 -9.4 4.6 44 44 A K - 0 0 172 1,-0.1 2,-0.1 0, 0.0 0, 0.0 -0.622 56.3-108.2-129.8-169.3 11.5 -6.2 4.1 45 45 A N - 0 0 109 -2,-0.2 2,-0.3 -3,-0.1 5,-0.1 -0.427 25.2-129.8-112.4-169.3 11.5 -3.1 1.8 46 46 A S - 0 0 66 3,-0.9 5,-0.2 -2,-0.1 -1,-0.0 -0.865 24.5-109.1-137.5 172.7 13.8 -2.0 -1.0 47 47 A A S S+ 0 0 82 -2,-0.3 -20,-0.1 1,-0.2 3,-0.1 -0.033 112.7 48.2 -94.2 34.3 15.7 1.1 -2.1 48 48 A L S S+ 0 0 123 1,-0.4 -21,-0.7 -22,-0.1 2,-0.4 0.524 112.1 32.3-138.4 -37.7 13.3 1.8 -5.0 49 49 A V E S-D 26 0B 32 -23,-0.2 2,-1.3 -22,-0.0 -3,-0.9 -0.985 73.6-126.5-129.7 135.5 9.7 1.5 -3.8 50 50 A K E -D 25 0B 80 -25,-0.6 2,-1.6 -2,-0.4 -25,-1.3 -0.619 26.6-165.3 -79.7 96.7 8.4 2.3 -0.3 51 51 A Y E -D 24 0B 83 -2,-1.3 2,-1.6 -27,-0.2 -27,-0.2 -0.579 8.6-178.8 -84.1 83.6 6.7 -0.9 0.6 52 52 A V E -D 23 0B 60 -29,-2.1 -29,-1.8 -2,-1.6 2,-0.2 -0.613 12.5-176.3 -84.7 89.4 4.5 0.2 3.6 53 53 A c E +D 22 0B 43 -2,-1.6 2,-0.3 -31,-0.3 -31,-0.3 -0.584 9.4 158.9 -86.6 149.7 2.9 -3.2 4.4 54 54 A d E -D 21 0B 32 -33,-2.4 -33,-1.9 -2,-0.2 -2,-0.0 -0.987 37.6-154.5-162.5 157.9 0.3 -3.5 7.2 55 55 A N + 0 0 94 -2,-0.3 4,-0.1 4,-0.2 -33,-0.1 0.080 61.4 113.7-124.0 20.9 -2.5 -5.8 8.3 56 56 A T S >> S- 0 0 78 4,-0.2 3,-1.9 -35,-0.1 4,-0.6 -0.011 94.4 -74.3 -78.8-168.0 -4.6 -3.2 10.2 57 57 A D T 34 S+ 0 0 83 1,-0.3 -53,-0.8 3,-0.3 -55,-0.3 0.748 134.7 62.6 -63.3 -18.4 -8.1 -2.0 9.1 58 58 A R B 34 S+B 3 0A 120 -55,-0.2 -53,-0.3 -54,-0.1 -1,-0.3 0.206 128.3 3.7 -90.3 18.3 -6.3 -0.1 6.3 59 59 A d T <4 0 0 3 -3,-1.9 -4,-0.2 -57,-0.5 -2,-0.2 0.037 360.0 360.0-159.1 -81.2 -5.1 -3.4 4.9 60 60 A N < 0 0 51 -4,-0.6 -3,-0.3 -39,-0.1 -4,-0.2 0.340 360.0 360.0-104.0 360.0 -6.2 -6.7 6.5