==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN 17-DEC-08 2KC6 . COMPND 2 MOLECULE: MATING PHEROMONE EN-1; . SOURCE 2 ORGANISM_SCIENTIFIC: EUPLOTES NOBILII; . AUTHOR B.PEDRINI,C.ALIMENTI,A.VALLESI,P.LUPORINI,K.WUTHRICH . 52 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3398.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 63.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 15.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 36.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A N >> 0 0 103 0, 0.0 3,-1.2 0, 0.0 4,-0.9 0.000 360.0 360.0 360.0 142.5 -8.1 7.4 -5.5 2 2 A P T 34 + 0 0 54 0, 0.0 18,-0.2 0, 0.0 40,-0.0 0.249 360.0 55.9 -79.6 15.8 -4.6 6.2 -4.5 3 3 A E T >4 S+ 0 0 151 2,-0.0 3,-1.1 3,-0.0 13,-0.1 0.760 109.7 50.4 -83.1 -40.1 -2.9 9.5 -4.1 4 4 A D T <4 S+ 0 0 113 -3,-1.2 38,-0.0 1,-0.3 34,-0.0 0.717 105.3 51.0 -68.7 -35.3 -5.6 10.5 -1.6 5 5 A W T 3< S+ 0 0 55 -4,-0.9 34,-2.5 34,-0.1 -1,-0.3 0.246 80.3 128.0 -90.3 5.4 -5.6 7.6 0.8 6 6 A F B < -A 38 0A 37 -3,-1.1 32,-0.3 32,-0.2 3,-0.1 -0.542 39.6-167.9 -74.8 131.9 -1.8 7.7 1.4 7 7 A T >> + 0 0 35 30,-2.2 3,-1.9 -2,-0.3 4,-1.2 -0.701 12.5 171.6-120.3 76.8 -0.5 7.8 5.0 8 8 A P T 34 + 0 0 71 0, 0.0 -1,-0.1 0, 0.0 5,-0.1 0.670 65.9 85.2 -60.5 -15.4 3.2 8.7 4.8 9 9 A D T 34 S+ 0 0 172 1,-0.2 3,-0.0 -3,-0.1 28,-0.0 0.734 113.4 14.1 -56.4 -22.1 3.2 9.1 8.7 10 10 A T T <4 S+ 0 0 103 -3,-1.9 2,-0.5 27,-0.1 -1,-0.2 0.457 109.0 92.2-133.4 -9.4 3.8 5.3 8.8 11 11 A a < - 0 0 8 -4,-1.2 2,-0.8 26,-0.2 26,-0.1 -0.807 66.4-145.8 -90.1 126.5 4.8 4.4 5.1 12 12 A A S S+ 0 0 102 -2,-0.5 2,-0.3 7,-0.0 -1,-0.1 -0.120 75.8 90.4 -79.4 33.4 8.6 4.5 4.7 13 13 A Y - 0 0 67 -2,-0.8 -2,-0.1 -5,-0.1 -3,-0.1 -0.957 63.7-155.0-131.8 148.4 7.9 5.8 1.1 14 14 A G S S+ 0 0 71 -2,-0.3 2,-0.5 1,-0.1 -1,-0.1 0.530 78.8 65.6-102.6 -8.9 7.5 9.4 -0.2 15 15 A D > - 0 0 91 1,-0.1 4,-2.7 -7,-0.0 5,-0.1 -0.965 65.2-151.2-120.5 126.7 5.3 8.6 -3.2 16 16 A S H > S+ 0 0 10 -2,-0.5 4,-2.6 2,-0.2 5,-0.2 0.755 104.8 54.9 -59.9 -26.7 1.8 7.2 -3.0 17 17 A N H > S+ 0 0 107 2,-0.2 4,-2.9 3,-0.2 5,-0.3 0.983 109.7 41.3 -69.6 -63.3 2.7 5.6 -6.4 18 18 A T H > S+ 0 0 72 2,-0.2 4,-2.3 1,-0.2 -2,-0.2 0.854 118.1 51.5 -56.2 -36.1 5.9 3.9 -5.2 19 19 A A H X S+ 0 0 0 -4,-2.7 4,-2.7 2,-0.2 3,-0.2 0.995 112.8 41.3 -61.4 -65.1 3.9 3.0 -2.0 20 20 A W H X S+ 0 0 46 -4,-2.6 4,-1.2 1,-0.2 -2,-0.2 0.887 116.0 51.3 -49.7 -47.7 0.8 1.4 -3.8 21 21 A T H < S+ 0 0 69 -4,-2.9 3,-0.4 2,-0.2 -1,-0.2 0.889 109.3 49.6 -66.3 -38.3 3.1 -0.3 -6.3 22 22 A T H >< S+ 0 0 18 -4,-2.3 3,-2.1 -5,-0.3 -2,-0.2 0.982 111.5 50.1 -56.6 -54.1 5.2 -1.8 -3.5 23 23 A b H 3< S+ 0 0 0 -4,-2.7 11,-0.3 1,-0.3 -2,-0.2 0.671 114.0 45.2 -61.2 -18.5 1.9 -3.0 -1.9 24 24 A T T 3< S+ 0 0 26 -4,-1.2 27,-0.8 -3,-0.4 -1,-0.3 0.217 110.3 61.1-109.4 12.6 0.8 -4.5 -5.2 25 25 A T S < S- 0 0 59 -3,-2.1 2,-0.4 -4,-0.2 27,-0.2 -0.945 95.9 -91.4-132.1 156.1 4.1 -6.3 -6.1 26 26 A P S S+ 0 0 102 0, 0.0 2,-0.2 0, 0.0 -3,-0.1 -0.548 73.6 117.7 -66.7 121.9 6.2 -9.0 -4.4 27 27 A G S S- 0 0 53 -2,-0.4 3,-0.2 -4,-0.1 -4,-0.0 -0.419 89.4 -63.0-143.9-137.8 8.7 -7.2 -2.1 28 28 A Q S S+ 0 0 169 1,-0.2 2,-0.2 -2,-0.2 -6,-0.0 0.514 133.1 31.0 -86.3 -15.2 9.1 -7.4 1.7 29 29 A T + 0 0 55 -4,-0.2 -1,-0.2 -7,-0.1 -4,-0.2 -0.706 69.9 145.3-153.3 81.7 5.6 -5.9 2.0 30 30 A C S >> S+ 0 0 12 -2,-0.2 3,-2.2 -3,-0.2 4,-0.8 0.511 81.5 3.1 -83.8-123.8 3.0 -6.6 -0.8 31 31 A Y H 3> S+ 0 0 111 1,-0.3 4,-0.6 2,-0.2 3,-0.4 0.724 131.3 58.5 -29.5 -44.3 -0.7 -7.0 0.3 32 32 A T H >> S+ 0 0 90 1,-0.2 4,-1.8 2,-0.2 3,-1.4 0.884 95.3 62.5 -65.2 -35.9 0.2 -6.1 4.0 33 33 A b H <> S+ 0 0 4 -3,-2.2 4,-0.7 1,-0.3 5,-0.3 0.872 91.5 67.7 -56.1 -34.2 1.7 -2.7 2.8 34 34 A c H 3< S+ 0 0 0 -4,-0.8 4,-0.5 -3,-0.4 3,-0.3 0.852 108.4 38.1 -50.5 -37.4 -1.9 -1.9 1.7 35 35 A S H << S+ 0 0 56 -3,-1.4 -2,-0.2 -4,-0.6 -1,-0.2 0.871 120.2 45.1 -79.0 -42.6 -2.7 -1.9 5.5 36 36 A S H < S+ 0 0 65 -4,-1.8 -2,-0.2 1,-0.2 -1,-0.2 0.115 121.2 34.5 -97.0 15.1 0.6 -0.3 6.7 37 37 A a S < S+ 0 0 8 -4,-0.7 -30,-2.2 -3,-0.3 2,-0.3 0.354 113.5 46.4-143.9 -7.0 0.8 2.6 4.1 38 38 A F B S-A 6 0A 5 -4,-0.5 -1,-0.3 -5,-0.3 -32,-0.2 -0.971 83.0 -99.7-139.3 152.9 -2.8 3.7 3.3 39 39 A D >> - 0 0 78 -34,-2.5 4,-2.8 -2,-0.3 3,-0.8 -0.337 53.6 -90.6 -59.9 162.1 -6.0 4.5 5.3 40 40 A V H 3> S+ 0 0 106 1,-0.3 4,-1.8 2,-0.2 5,-0.2 0.706 129.1 57.5 -43.6 -34.0 -8.6 1.8 5.5 41 41 A V H 3> S+ 0 0 84 2,-0.2 4,-1.4 1,-0.2 -1,-0.3 0.945 114.0 37.0 -69.2 -46.8 -10.2 3.2 2.3 42 42 A G H <> S+ 0 0 0 -3,-0.8 4,-2.2 -37,-0.2 -2,-0.2 0.827 111.2 64.6 -72.8 -31.9 -7.0 2.7 0.3 43 43 A E H X S+ 0 0 43 -4,-2.8 4,-3.6 2,-0.2 3,-0.4 0.957 106.4 39.4 -54.3 -61.2 -6.2 -0.5 2.2 44 44 A Q H X S+ 0 0 152 -4,-1.8 4,-1.4 1,-0.3 -1,-0.2 0.888 116.3 51.7 -62.3 -40.0 -9.2 -2.4 0.8 45 45 A A H < S+ 0 0 25 -4,-1.4 -1,-0.3 -5,-0.2 -2,-0.2 0.839 117.5 39.3 -65.5 -32.0 -8.8 -0.9 -2.6 46 46 A c H >X S+ 0 0 0 -4,-2.2 3,-2.0 -3,-0.4 4,-0.8 0.938 111.9 55.0 -79.9 -52.7 -5.1 -2.0 -2.5 47 47 A Q H 3< S+ 0 0 43 -4,-3.6 -2,-0.2 1,-0.3 -3,-0.2 0.676 110.1 49.1 -56.0 -20.4 -5.7 -5.4 -0.9 48 48 A M T 3< S+ 0 0 149 -4,-1.4 -1,-0.3 -5,-0.3 -2,-0.2 0.584 118.9 38.7 -90.7 -11.2 -8.2 -6.1 -3.8 49 49 A S T <4 S+ 0 0 53 -3,-2.0 2,-0.7 -4,-0.2 -2,-0.2 0.280 92.0 106.9-112.2 -0.2 -5.5 -5.0 -6.3 50 50 A A < + 0 0 14 -4,-0.8 2,-0.5 -19,-0.1 -26,-0.2 -0.804 38.9 167.2-101.7 108.1 -2.4 -6.6 -4.6 51 51 A Q 0 0 166 -27,-0.8 -27,-0.1 -2,-0.7 -3,-0.0 -0.896 360.0 360.0-131.9 93.8 -1.0 -9.7 -6.3 52 52 A C 0 0 115 -2,-0.5 -27,-0.1 -27,-0.2 -2,-0.0 -0.747 360.0 360.0 -84.8 360.0 2.3 -11.1 -5.4