==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 22-DEC-08 2KCG . COMPND 2 MOLECULE: CYCLOVIOLACIN-O2; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA ODORATA; . AUTHOR C.K.WANG . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2318.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 46.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 23.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 57 0, 0.0 29,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -25.3 8.0 6.7 0.8 2 2 A I E -A 29 0A 120 27,-1.6 27,-3.2 1,-0.0 2,-0.0 -0.817 360.0-112.5 -96.4 125.8 6.3 6.5 -2.6 3 3 A P E -A 28 0A 59 0, 0.0 25,-0.3 0, 0.0 4,-0.1 -0.291 12.4-142.7 -56.9 132.0 2.8 4.9 -2.7 4 4 A a - 0 0 44 23,-2.8 24,-0.2 2,-0.2 3,-0.1 0.583 43.3-113.4 -70.8 -10.3 2.7 1.7 -4.6 5 5 A G S S+ 0 0 59 22,-0.7 2,-0.3 1,-0.4 -1,-0.1 -0.073 85.1 110.1 101.9 -32.6 -0.7 2.7 -5.9 6 6 A E - 0 0 51 21,-0.2 21,-2.8 20,-0.1 2,-0.4 -0.559 58.4-145.8 -80.3 139.6 -2.5 -0.0 -4.1 7 7 A S - 0 0 63 19,-0.3 2,-0.4 -2,-0.3 19,-0.3 -0.896 11.2-155.2-109.7 135.4 -4.7 1.0 -1.1 8 8 A b + 0 0 12 -2,-0.4 18,-0.2 17,-0.4 17,-0.2 -0.370 47.3 135.9-101.8 50.4 -5.2 -1.1 2.0 9 9 A V S S- 0 0 58 -2,-0.4 -1,-0.2 16,-0.3 17,-0.1 0.944 93.4 -18.1 -62.7 -50.1 -8.6 0.5 2.8 10 10 A W S S+ 0 0 236 1,-0.4 -2,-0.1 -3,-0.3 -1,-0.1 0.614 138.7 41.4-125.4 -41.5 -10.3 -2.8 3.6 11 11 A I S S- 0 0 121 -4,-0.3 -1,-0.4 1,-0.0 -2,-0.2 -0.939 88.6-108.3-117.2 134.9 -8.1 -5.5 2.0 12 12 A P - 0 0 96 0, 0.0 -5,-0.1 0, 0.0 -4,-0.1 -0.205 44.8 -91.5 -59.2 148.9 -4.2 -5.5 2.1 13 13 A c > - 0 0 9 -7,-0.1 3,-0.6 1,-0.1 4,-0.1 -0.352 24.6-149.8 -63.8 138.0 -2.3 -4.8 -1.1 14 14 A I G > S+ 0 0 143 1,-0.2 3,-0.9 2,-0.1 -1,-0.1 0.854 97.6 53.8 -77.2 -36.9 -1.4 -7.8 -3.2 15 15 A S G > S+ 0 0 47 1,-0.2 3,-1.4 2,-0.1 -1,-0.2 0.231 76.8 105.1 -83.1 16.8 1.7 -6.2 -4.6 16 16 A S G X> + 0 0 45 -3,-0.6 4,-2.6 1,-0.3 3,-2.4 0.789 61.5 76.9 -64.9 -27.7 2.9 -5.5 -1.1 17 17 A A G <4 S+ 0 0 98 -3,-0.9 -1,-0.3 1,-0.3 -2,-0.1 0.689 80.5 68.5 -56.8 -21.6 5.4 -8.4 -1.5 18 18 A I G <4 S- 0 0 97 -3,-1.4 -1,-0.3 1,-0.1 -2,-0.2 0.557 136.6 -75.0 -76.8 -6.4 7.6 -6.1 -3.5 19 19 A G T <4 S+ 0 0 48 -3,-2.4 2,-0.4 1,-0.2 11,-0.3 0.668 83.2 149.3 117.5 33.4 8.3 -4.1 -0.4 20 20 A a < - 0 0 17 -4,-2.6 2,-0.4 -5,-0.2 9,-0.2 -0.793 27.7-159.3 -99.8 139.9 5.1 -2.1 0.2 21 21 A S E -B 28 0A 85 7,-3.1 7,-3.0 -2,-0.4 2,-0.4 -0.943 23.8-114.6-119.2 137.5 3.9 -1.1 3.6 22 22 A b E +B 27 0A 77 -2,-0.4 2,-0.4 5,-0.3 5,-0.3 -0.574 43.1 165.9 -73.5 122.0 0.3 -0.2 4.5 23 23 A K E > -B 26 0A 97 3,-3.0 3,-1.4 -2,-0.4 -15,-0.1 -0.963 67.0 -13.0-142.6 122.0 0.1 3.4 5.6 24 24 A S T 3 S- 0 0 92 -2,-0.4 3,-0.1 1,-0.3 -1,-0.1 0.863 128.7 -55.3 57.0 36.8 -3.1 5.5 6.0 25 25 A K T 3 S+ 0 0 105 1,-0.2 2,-0.4 -17,-0.2 -17,-0.4 0.674 126.2 99.9 68.0 21.2 -4.9 2.8 4.1 26 26 A V E < S- B 0 23A 38 -3,-1.4 -3,-3.0 -19,-0.3 2,-0.5 -0.999 72.8-128.6-137.7 131.0 -2.4 3.2 1.3 27 27 A c E - B 0 22A 3 -21,-2.8 -23,-2.8 -2,-0.4 -22,-0.7 -0.684 29.1-170.7 -83.6 126.8 0.6 1.0 0.6 28 28 A Y E -AB 3 21A 57 -7,-3.0 -7,-3.1 -2,-0.5 2,-0.4 -0.841 13.5-159.2-115.7 154.9 3.9 2.9 0.2 29 29 A R E A 2 0A 124 -27,-3.2 -27,-1.6 -2,-0.3 -9,-0.1 -0.955 360.0 360.0-137.6 112.4 7.3 1.7 -0.9 30 30 A N 0 0 160 -2,-0.4 -1,-0.1 -11,-0.3 -10,-0.1 0.856 360.0 360.0 61.4 360.0 10.3 3.8 -0.0