==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 21-DEC-08 2KCH . COMPND 2 MOLECULE: KALATA-B2; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR C.K.WANG . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2086.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 58.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 30 0, 0.0 2,-0.8 0, 0.0 28,-0.2 0.000 360.0 360.0 360.0 -40.5 2.0 2.6 4.4 2 2 A G + 0 0 52 20,-0.7 21,-0.1 1,-0.2 27,-0.1 -0.024 360.0 126.1 76.7 -35.4 -1.2 1.4 6.1 3 3 A E - 0 0 40 -2,-0.8 19,-3.0 18,-0.1 2,-0.6 -0.215 62.0-124.5 -58.1 143.8 -3.2 3.0 3.3 4 4 A T - 0 0 84 17,-0.2 2,-1.7 -3,-0.1 3,-0.3 -0.820 7.6-150.7 -95.1 121.4 -5.8 0.7 1.6 5 5 A b > + 0 0 0 -2,-0.6 3,-2.4 1,-0.2 16,-0.2 -0.415 35.4 156.3 -88.1 61.2 -5.4 0.5 -2.2 6 6 A F T 3 S+ 0 0 160 -2,-1.7 -1,-0.2 1,-0.3 4,-0.1 0.900 78.5 40.9 -52.8 -44.5 -9.1 -0.1 -2.6 7 7 A G T 3 S- 0 0 66 2,-0.4 2,-0.5 -3,-0.3 -1,-0.3 0.071 120.9-108.1 -93.4 25.1 -8.9 1.1 -6.2 8 8 A G S < S+ 0 0 36 -3,-2.4 9,-0.3 1,-0.2 2,-0.2 0.050 92.7 101.4 75.6 -30.5 -5.6 -0.6 -6.8 9 9 A T - 0 0 118 -2,-0.5 -2,-0.4 -5,-0.1 2,-0.3 -0.617 62.2-145.0 -89.1 149.0 -3.8 2.7 -6.7 10 10 A c - 0 0 31 -2,-0.2 4,-0.1 5,-0.2 -5,-0.1 -0.816 11.0-147.6-112.2 151.4 -1.9 4.0 -3.7 11 11 A N S S+ 0 0 148 -2,-0.3 -1,-0.1 2,-0.1 -6,-0.0 0.677 83.0 73.8 -88.5 -21.6 -1.5 7.6 -2.5 12 12 A T S > S- 0 0 64 3,-0.0 3,-1.6 -9,-0.0 2,-0.1 -0.846 85.7-124.2-100.7 123.4 2.0 7.1 -1.1 13 13 A P T 3 S+ 0 0 120 0, 0.0 3,-0.1 0, 0.0 -2,-0.1 -0.362 95.7 27.6 -63.7 136.0 4.9 6.7 -3.7 14 14 A G T 3 S+ 0 0 52 1,-0.3 11,-0.9 -4,-0.1 2,-0.5 0.111 92.5 116.3 98.7 -21.4 6.9 3.6 -3.3 15 15 A a E < -A 24 0A 16 -3,-1.6 2,-0.3 9,-0.2 9,-0.3 -0.713 53.9-151.8 -86.7 126.3 4.0 1.7 -1.9 16 16 A S E -A 23 0A 74 7,-3.3 7,-3.3 -2,-0.5 2,-0.4 -0.754 26.5-103.7 -96.8 140.6 2.8 -1.2 -4.0 17 17 A b E +A 22 0A 52 -2,-0.3 5,-0.2 -9,-0.3 2,-0.1 -0.507 40.2 169.9 -69.8 123.7 -0.8 -2.3 -3.9 18 18 A T E > -A 21 0A 70 3,-1.6 3,-1.8 -2,-0.4 -1,-0.1 -0.597 54.6 -95.8-130.1 61.7 -1.2 -5.5 -1.9 19 19 A W T 3 S+ 0 0 156 1,-0.4 -13,-0.1 -14,-0.2 -15,-0.1 0.151 108.6 13.7 -27.5 125.7 -5.0 -5.4 -1.7 20 20 A P T 3 S+ 0 0 62 0, 0.0 -1,-0.4 0, 0.0 2,-0.4 -0.803 133.5 41.7 -98.0 38.1 -6.4 -4.3 0.6 21 21 A I E < S-A 18 0A 67 -3,-1.8 -3,-1.6 -17,-0.2 2,-0.3 -0.995 70.1-127.7-143.4 136.9 -3.2 -2.7 1.8 22 22 A c E -A 17 0A 0 -19,-3.0 -20,-0.7 -2,-0.4 2,-0.4 -0.628 24.3-166.5 -82.4 136.6 -0.3 -0.8 0.2 23 23 A T E > -A 16 0A 13 -7,-3.3 -7,-3.3 -2,-0.3 3,-0.6 -0.982 11.1-147.9-127.3 123.5 3.2 -2.1 1.0 24 24 A R E > S-AB 15 27A 113 3,-2.3 3,-2.5 -2,-0.4 -9,-0.2 -0.791 88.3 -10.2 -92.6 125.7 6.4 -0.1 0.2 25 25 A D T 3 S- 0 0 115 -11,-0.9 -1,-0.3 -2,-0.5 -10,-0.1 0.783 133.3 -56.2 58.6 26.8 9.3 -2.4 -0.6 26 26 A G T < S+ 0 0 54 -3,-0.6 -1,-0.3 1,-0.2 -2,-0.1 0.484 113.9 123.9 84.1 3.3 7.0 -5.2 0.6 27 27 A L B < -B 24 0A 103 -3,-2.5 -3,-2.3 1,-0.1 2,-1.9 -0.872 59.0-145.6-102.9 121.5 6.6 -3.5 4.0 28 28 A P 0 0 81 0, 0.0 -5,-0.1 0, 0.0 -6,-0.1 -0.194 360.0 360.0 -77.0 47.2 2.9 -2.7 5.1 29 29 A V 0 0 109 -2,-1.9 -6,-0.1 -5,-0.2 -14,-0.0 0.630 360.0 360.0 -88.9 360.0 4.1 0.4 6.8