==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 29-DEC-08 2KCR . COMPND 2 MOLECULE: ANNTOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HYLA ANNECTANS; . AUTHOR J.HONG,D.YOU,R.LAI,D.LIN . 61 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4055.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 59.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 13.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 13.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 4.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 13.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 6.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 96 0, 0.0 57,-0.1 0, 0.0 56,-0.1 0.000 360.0 360.0 360.0 42.4 13.3 -3.0 -2.1 2 2 A A + 0 0 54 55,-0.1 3,-0.1 58,-0.1 55,-0.1 -0.036 360.0 144.5-178.0 44.4 12.8 -5.3 0.8 3 3 A Q S S- 0 0 93 54,-0.2 2,-0.3 1,-0.2 54,-0.1 0.879 84.0 -16.6 -59.2 -38.8 14.4 -3.8 3.9 4 4 A D S > S- 0 0 66 53,-0.0 3,-2.3 0, 0.0 -1,-0.2 -0.930 79.6 -86.6-155.8 174.1 11.6 -5.4 5.9 5 5 A Y G > S+ 0 0 172 1,-0.3 3,-1.8 -2,-0.3 4,-0.1 0.663 117.2 77.3 -65.2 -15.3 8.1 -6.9 5.5 6 6 A R G 3 S+ 0 0 138 1,-0.3 -1,-0.3 2,-0.1 51,-0.2 0.643 94.2 50.5 -65.9 -14.4 6.9 -3.3 5.8 7 7 A a G < S+ 0 0 0 -3,-2.3 -1,-0.3 49,-0.1 -2,-0.2 0.316 126.1 26.7-100.2 2.5 8.1 -3.1 2.2 8 8 A Q S < S+ 0 0 60 -3,-1.8 37,-0.2 -4,-0.1 17,-0.2 0.398 77.5 118.1-121.2 -98.5 6.1 -6.2 1.4 9 9 A L S S- 0 0 92 35,-0.1 2,-0.2 -4,-0.1 -3,-0.1 0.023 74.0 -49.3 50.2-163.6 3.0 -7.3 3.4 10 10 A S - 0 0 65 1,-0.1 35,-3.5 16,-0.0 15,-0.2 -0.651 32.1-171.6-100.7 158.4 -0.4 -7.6 1.7 11 11 A R - 0 0 95 33,-0.3 2,-1.4 -2,-0.2 33,-0.2 0.545 17.9-168.9-113.4 -24.1 -2.2 -5.2 -0.6 12 12 A N - 0 0 76 31,-0.2 -1,-0.2 1,-0.1 32,-0.1 -0.554 42.5 -98.5 66.5 -90.5 -5.4 -7.1 -0.7 13 13 A Y - 0 0 163 -2,-1.4 24,-0.2 -3,-0.1 -1,-0.1 -0.221 32.5-119.9-177.7 -72.7 -7.0 -5.1 -3.5 14 14 A G + 0 0 10 21,-0.2 22,-1.0 23,-0.1 24,-0.3 0.804 39.7 163.1 115.3 51.4 -9.3 -2.4 -2.5 15 15 A K - 0 0 150 22,-0.1 21,-0.1 20,-0.1 23,-0.1 0.996 47.7-125.7 -53.4 -70.8 -12.8 -2.9 -4.0 16 16 A G + 0 0 33 21,-0.1 23,-0.1 24,-0.1 21,-0.1 0.204 43.4 176.3 122.9 118.6 -14.4 -0.5 -1.7 17 17 A S S S- 0 0 68 21,-2.2 22,-0.2 19,-0.1 20,-0.0 0.680 103.0 -3.5-107.4 -43.9 -17.3 -0.6 0.7 18 18 A G S S- 0 0 49 20,-2.7 21,-0.2 18,-0.1 19,-0.1 0.516 99.7-139.3-117.4 -17.6 -17.0 2.9 2.1 19 19 A S + 0 0 63 19,-1.8 18,-0.2 1,-0.0 17,-0.1 0.890 30.9 175.6 55.2 114.4 -13.8 3.8 0.2 20 20 A F - 0 0 126 16,-3.3 17,-0.2 15,-0.1 16,-0.2 0.723 32.2-140.2-106.7 -41.0 -11.1 5.7 2.0 21 21 A T + 0 0 58 15,-1.1 15,-0.3 14,-0.1 2,-0.3 0.912 35.3 157.3 69.5 98.2 -8.5 5.8 -0.8 22 22 A N E -A 35 0A 17 13,-3.0 13,-2.7 27,-0.0 2,-0.2 -0.746 39.6 -98.4-130.9-179.8 -5.1 5.3 0.5 23 23 A Y E -AB 34 47A 73 24,-4.2 24,-2.5 11,-0.3 2,-0.3 -0.660 30.4-172.4-102.2 161.0 -1.9 4.0 -1.2 24 24 A Y E -A 33 0A 29 9,-3.6 9,-2.9 -2,-0.2 2,-1.0 -0.979 32.7-108.3-146.2 151.3 -0.4 0.6 -1.1 25 25 A Y E -A 32 0A 13 20,-0.4 2,-0.7 -2,-0.3 7,-0.3 -0.718 31.6-154.0 -86.8 105.7 2.9 -0.7 -2.4 26 26 A D E >>> -A 31 0A 23 5,-2.2 5,-1.7 -2,-1.0 3,-1.1 -0.696 6.0-162.4 -83.0 112.7 2.1 -2.8 -5.5 27 27 A K T 345S+ 0 0 67 -2,-0.7 -1,-0.1 1,-0.2 5,-0.1 0.159 84.5 70.3 -85.5 19.9 4.9 -5.4 -5.9 28 28 A A T 345S+ 0 0 82 3,-0.2 -1,-0.2 0, 0.0 -2,-0.0 0.602 118.7 20.1 -99.4 -21.9 3.8 -6.0 -9.5 29 29 A T T <45S- 0 0 85 -3,-1.1 -2,-0.2 2,-0.3 3,-0.1 0.370 103.4-128.7-118.6 -5.2 5.1 -2.6 -10.5 30 30 A S T <5S+ 0 0 74 -4,-1.1 2,-0.3 1,-0.2 -3,-0.2 0.856 75.8 97.2 55.3 39.5 7.4 -2.2 -7.4 31 31 A S E - 0 0 49 -27,-0.1 4,-2.2 1,-0.1 -1,-0.1 -0.936 65.8-128.8-137.1 160.6 0.5 8.8 0.9 50 50 A L H > S+ 0 0 52 -2,-0.3 4,-4.1 2,-0.2 5,-0.3 0.792 111.1 61.3 -79.9 -26.4 2.9 7.4 -1.7 51 51 A E H > S+ 0 0 136 2,-0.2 4,-0.9 1,-0.2 -1,-0.2 0.810 109.8 42.2 -67.7 -29.2 5.6 9.8 -0.6 52 52 A D H > S+ 0 0 89 2,-0.2 4,-1.8 3,-0.1 5,-0.2 0.916 117.3 47.0 -75.9 -49.6 5.4 8.0 2.8 53 53 A b H X>S+ 0 0 0 -4,-2.2 4,-2.2 1,-0.2 5,-0.6 0.918 115.1 45.3 -56.2 -48.5 5.1 4.6 1.2 54 54 A E H <>S+ 0 0 68 -4,-4.1 5,-3.2 3,-0.2 6,-0.4 0.835 105.4 64.4 -69.1 -32.8 8.0 5.4 -1.2 55 55 A A H X>S+ 0 0 47 -4,-0.9 5,-1.3 -5,-0.3 4,-0.6 0.985 116.1 24.8 -52.5 -66.3 10.0 6.8 1.7 56 56 A T H X5S+ 0 0 33 -4,-1.8 4,-0.8 3,-0.2 5,-0.4 0.982 136.6 28.7 -63.4 -57.4 10.3 3.6 3.6 57 57 A a H X5S+ 0 0 0 -4,-2.2 4,-1.0 -5,-0.2 -3,-0.2 0.980 128.5 32.4 -77.1 -56.3 9.8 1.0 0.8 58 58 A V H 4