==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-MAY-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 06-JAN-09 2KDB . COMPND 2 MOLECULE: HOMOCYSTEINE-RESPONSIVE ENDOPLASMIC RETICULUM-RES . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR B.WU,A.YEE,C.FARES,A.LEMAK,A.GUTMANAS,R.DOHERTY,A.SEMESI,S.D . 77 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5143.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 61 79.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 7.8 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 16 20.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 15 19.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 11.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 16.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 107 0, 0.0 2,-0.4 0, 0.0 20,-0.2 0.000 360.0 360.0 360.0-176.3 2.7 -0.6 -1.3 2 2 A V E -A 20 0A 15 18,-2.1 18,-2.3 1,-0.0 2,-1.1 -0.717 360.0-124.3 -87.2 133.8 2.1 -3.4 -4.0 3 3 A T E -Ab 19 71A 54 67,-2.0 69,-2.0 -2,-0.4 2,-0.9 -0.690 30.6-174.3 -79.5 97.5 5.1 -5.3 -5.3 4 4 A L E -Ab 18 72A 0 14,-2.3 14,-2.2 -2,-1.1 2,-1.1 -0.848 12.5-152.6-102.2 99.4 4.8 -4.8 -9.1 5 5 A I E -Ab 17 73A 24 67,-2.1 69,-2.5 -2,-0.9 2,-0.9 -0.628 8.3-165.5 -83.3 95.6 7.5 -7.0 -10.6 6 6 A I E -Ab 16 74A 0 10,-2.7 10,-1.8 -2,-1.1 2,-0.4 -0.754 7.6-170.9 -86.2 102.5 8.6 -5.4 -13.9 7 7 A K E - b 0 75A 35 67,-2.6 69,-2.7 -2,-0.9 8,-0.1 -0.806 25.0-111.9 -95.1 139.0 10.6 -8.0 -15.9 8 8 A A > - 0 0 2 5,-1.1 3,-1.1 -2,-0.4 -1,-0.1 -0.199 31.6-100.6 -67.3 158.1 12.4 -6.9 -19.1 9 9 A P T 3 S+ 0 0 69 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.904 124.9 16.7 -41.1 -58.7 11.3 -8.1 -22.7 10 10 A N T 3 S- 0 0 155 0, 0.0 -2,-0.1 0, 0.0 -3,-0.0 0.186 119.3 -99.8-100.2 15.8 14.1 -10.8 -23.0 11 11 A Q S < S+ 0 0 112 -3,-1.1 4,-0.1 3,-0.1 64,-0.0 0.858 73.6 154.9 55.4 41.2 14.7 -10.6 -19.2 12 12 A K S S+ 0 0 180 2,-0.1 2,-0.3 -5,-0.0 -5,-0.0 0.930 70.9 33.1 -59.2 -49.4 17.7 -8.4 -20.2 13 13 A Y S S- 0 0 102 1,-0.2 -5,-1.1 3,-0.0 3,-0.1 -0.803 103.6-108.4 -98.6 151.6 17.3 -6.8 -16.7 14 14 A S - 0 0 91 -2,-0.3 2,-0.6 1,-0.2 -6,-0.3 0.092 56.9 -53.5 -68.8-177.3 16.1 -9.1 -13.8 15 15 A D - 0 0 94 -8,-0.1 2,-0.8 -4,-0.1 -8,-0.2 -0.512 57.7-150.9 -64.0 107.8 12.7 -9.0 -12.0 16 16 A Q E -A 6 0A 69 -10,-1.8 -10,-2.7 -2,-0.6 2,-1.3 -0.784 0.6-150.7 -90.6 107.5 12.3 -5.3 -10.8 17 17 A T E -A 5 0A 77 -2,-0.8 2,-0.9 -12,-0.2 -12,-0.2 -0.652 14.9-170.0 -81.7 93.3 10.2 -5.1 -7.6 18 18 A I E -A 4 0A 13 -14,-2.2 -14,-2.3 -2,-1.3 2,-1.1 -0.801 14.2-148.5 -87.1 103.3 8.5 -1.7 -8.0 19 19 A S E +A 3 0A 85 -2,-0.9 2,-0.3 -16,-0.2 -16,-0.2 -0.666 46.8 137.9 -72.7 98.8 6.8 -0.8 -4.7 20 20 A C E -A 2 0A 3 -18,-2.3 -18,-2.1 -2,-1.1 2,-0.3 -0.908 52.0 -99.0-144.0 165.8 3.9 1.2 -6.1 21 21 A F > - 0 0 119 -2,-0.3 3,-0.8 -20,-0.2 40,-0.2 -0.694 11.6-140.6 -96.5 143.8 0.1 1.7 -5.7 22 22 A L T 3 S+ 0 0 17 -2,-0.3 40,-1.5 1,-0.2 41,-0.2 0.453 89.5 92.3 -73.8 -6.6 -2.7 0.2 -7.8 23 23 A N T 3 S+ 0 0 108 38,-0.1 -1,-0.2 37,-0.1 37,-0.0 0.899 77.6 65.5 -51.1 -48.5 -4.3 3.7 -7.3 24 24 A W S < S- 0 0 93 -3,-0.8 37,-1.9 1,-0.1 38,-0.4 -0.176 88.3-109.2 -75.4 167.8 -2.8 4.9 -10.6 25 25 A T B > -E 60 0B 16 35,-0.3 4,-2.0 36,-0.1 35,-0.2 -0.381 35.7 -99.2 -84.4 172.1 -3.5 3.7 -14.2 26 26 A V H > S+ 0 0 1 33,-1.7 4,-2.1 30,-0.5 31,-0.2 0.836 124.8 55.6 -59.8 -34.0 -1.0 1.7 -16.4 27 27 A G H > S+ 0 0 13 30,-1.1 4,-1.9 32,-0.3 -1,-0.2 0.926 108.6 43.1 -64.7 -50.1 -0.1 5.1 -18.1 28 28 A K H > S+ 0 0 130 29,-0.3 4,-1.9 1,-0.2 -2,-0.2 0.845 117.3 48.3 -66.3 -35.6 0.9 6.9 -14.8 29 29 A L H X S+ 0 0 0 -4,-2.0 4,-2.0 2,-0.2 -2,-0.2 0.874 109.7 51.6 -70.7 -40.1 2.8 3.8 -13.6 30 30 A K H X S+ 0 0 25 -4,-2.1 4,-2.3 2,-0.2 -2,-0.2 0.824 110.0 49.1 -69.0 -34.6 4.5 3.4 -17.0 31 31 A T H X S+ 0 0 69 -4,-1.9 4,-0.8 2,-0.2 -2,-0.2 0.932 111.2 50.6 -61.9 -47.7 5.6 7.1 -16.8 32 32 A H H X S+ 0 0 62 -4,-1.9 4,-2.7 1,-0.2 3,-0.2 0.831 111.0 49.2 -58.5 -36.3 6.8 6.3 -13.3 33 33 A L H X S+ 0 0 6 -4,-2.0 4,-2.4 2,-0.2 7,-0.3 0.936 104.1 56.8 -70.1 -47.3 8.8 3.3 -14.7 34 34 A S H < S+ 0 0 11 -4,-2.3 -1,-0.2 1,-0.2 -2,-0.2 0.646 116.4 40.1 -60.7 -17.3 10.4 5.4 -17.5 35 35 A N H < S+ 0 0 96 -4,-0.8 -2,-0.2 -3,-0.2 -1,-0.2 0.869 122.5 36.0 -87.2 -56.8 11.7 7.5 -14.5 36 36 A V H < S+ 0 0 71 -4,-2.7 -2,-0.2 -5,-0.1 -3,-0.2 0.446 97.4 88.5 -87.5 -4.3 12.6 4.8 -11.9 37 37 A Y S >< S- 0 0 8 -4,-2.4 3,-1.2 -5,-0.1 -21,-0.0 -0.868 77.1-136.7 -97.2 128.0 13.9 2.2 -14.4 38 38 A P T 3 S+ 0 0 102 0, 0.0 -1,-0.1 0, 0.0 -4,-0.0 0.660 104.2 53.7 -66.7 -18.4 17.7 2.7 -15.1 39 39 A S T 3 S- 0 0 61 2,-0.0 -5,-0.1 -3,-0.0 -3,-0.0 0.800 93.6-150.8 -77.3 -32.1 17.3 2.1 -18.9 40 40 A K < - 0 0 125 -3,-1.2 -6,-0.1 -7,-0.3 3,-0.1 0.993 21.2-151.8 53.8 69.8 14.5 4.8 -19.0 41 41 A P - 0 0 21 0, 0.0 2,-0.6 0, 0.0 -1,-0.1 -0.325 25.7 -83.1 -79.3 156.3 12.6 3.2 -22.0 42 42 A L >> - 0 0 103 1,-0.2 4,-2.9 2,-0.1 3,-1.3 -0.420 35.7-158.8 -61.1 102.9 10.4 5.0 -24.6 43 43 A T T 34 S+ 0 0 50 -2,-0.6 -1,-0.2 1,-0.3 -12,-0.0 0.776 90.4 58.5 -54.6 -33.3 6.9 5.4 -22.8 44 44 A K T 34 S+ 0 0 173 1,-0.2 -1,-0.3 3,-0.0 -2,-0.1 0.805 117.6 29.9 -66.0 -35.7 5.2 5.9 -26.3 45 45 A D T <4 S+ 0 0 86 -3,-1.3 -2,-0.2 2,-0.0 -1,-0.2 0.832 104.8 88.1 -92.6 -39.5 6.5 2.4 -27.5 46 46 A Q < + 0 0 32 -4,-2.9 2,-0.3 31,-0.1 30,-0.1 -0.304 51.4 173.6 -72.7 139.7 6.6 0.6 -24.2 47 47 A R - 0 0 135 28,-0.0 30,-1.7 -2,-0.0 2,-0.5 -0.908 31.2-113.7-137.2 165.2 3.5 -1.3 -22.8 48 48 A L E -CD 55 76A 0 7,-0.7 7,-2.9 -2,-0.3 2,-0.5 -0.929 23.6-167.7-108.2 123.5 2.8 -3.6 -19.9 49 49 A V E -CD 54 75A 37 26,-2.5 26,-2.9 -2,-0.5 2,-0.7 -0.965 7.1-158.7-111.6 116.9 1.9 -7.3 -20.6 50 50 A Y E > -CD 53 74A 42 3,-1.6 3,-1.8 -2,-0.5 24,-0.2 -0.871 68.7 -38.0-106.4 104.3 0.5 -9.2 -17.5 51 51 A S T 3 S- 0 0 92 -2,-0.7 -1,-0.2 22,-0.6 3,-0.1 0.688 128.6 -36.0 59.1 26.5 0.8 -13.0 -17.7 52 52 A G T 3 S+ 0 0 69 1,-0.4 -1,-0.3 23,-0.1 2,-0.1 -0.126 119.8 95.7 122.8 -35.0 -0.1 -12.9 -21.5 53 53 A R E < S-C 50 0A 110 -3,-1.8 -3,-1.6 1,-0.0 -1,-0.4 -0.442 72.8-114.9 -89.6 161.9 -2.7 -10.0 -21.7 54 54 A L E -C 49 0A 73 -5,-0.2 -5,-0.2 -2,-0.1 -1,-0.0 -0.833 17.8-146.9 -99.2 130.4 -2.0 -6.3 -22.6 55 55 A L E -C 48 0A 3 -7,-2.9 -7,-0.7 -2,-0.4 2,-0.2 -0.874 17.0-149.1 -95.3 105.1 -2.6 -3.6 -19.9 56 56 A P > - 0 0 34 0, 0.0 3,-0.8 0, 0.0 -30,-0.5 -0.514 18.8-121.4 -75.2 152.0 -3.9 -0.4 -21.7 57 57 A D T 3 S+ 0 0 98 1,-0.2 -30,-1.1 -31,-0.2 -29,-0.3 0.579 101.5 70.2 -72.0 -12.6 -3.0 3.0 -20.1 58 58 A H T 3 S+ 0 0 139 -32,-0.1 -1,-0.2 -33,-0.1 2,-0.2 0.828 89.5 67.2 -77.1 -34.4 -6.7 4.1 -19.6 59 59 A L S < S- 0 0 31 -3,-0.8 -33,-1.7 1,-0.1 -32,-0.3 -0.527 87.9-105.6 -92.2 156.0 -7.7 1.6 -16.8 60 60 A Q B > -E 25 0B 88 -35,-0.2 3,-1.0 -2,-0.2 4,-0.5 -0.578 23.2-123.8 -81.7 143.6 -6.4 1.5 -13.2 61 61 A L T >> S+ 0 0 1 -37,-1.9 4,-2.5 1,-0.2 3,-1.4 0.830 104.5 70.1 -50.4 -44.9 -3.9 -1.3 -12.2 62 62 A K H 3> S+ 0 0 108 -40,-1.5 4,-0.6 -38,-0.4 -1,-0.2 0.836 86.7 64.4 -42.0 -48.8 -6.2 -2.5 -9.4 63 63 A D H <4 S+ 0 0 116 -3,-1.0 -1,-0.2 1,-0.2 -2,-0.2 0.789 118.4 24.5 -53.1 -37.9 -8.8 -3.9 -11.8 64 64 A I H X4 S+ 0 0 15 -3,-1.4 3,-0.6 -4,-0.5 -1,-0.2 0.805 126.2 49.7 -93.0 -35.4 -6.3 -6.6 -13.1 65 65 A L H 3X S+ 0 0 0 -4,-2.5 4,-0.5 1,-0.2 -2,-0.2 0.068 84.5 91.4-100.7 22.6 -4.0 -6.7 -10.1 66 66 A R T 3< S+ 0 0 191 -4,-0.6 -1,-0.2 -5,-0.2 -3,-0.1 0.805 70.4 73.5 -82.0 -33.4 -6.9 -7.2 -7.5 67 67 A K T <4 S+ 0 0 183 -3,-0.6 -2,-0.1 1,-0.2 -1,-0.1 0.894 121.2 5.6 -55.5 -59.8 -6.8 -11.0 -7.6 68 68 A Q T 4 S- 0 0 97 1,-0.1 2,-2.0 3,-0.1 -1,-0.2 0.847 80.7-178.5 -86.4 -43.2 -3.5 -11.6 -5.7 69 69 A D < + 0 0 86 -4,-0.5 -66,-0.1 1,-0.2 -2,-0.1 -0.384 65.4 76.4 70.7 -55.6 -3.0 -7.9 -4.7 70 70 A E S S- 0 0 120 -2,-2.0 -67,-2.0 1,-0.1 2,-0.3 0.921 108.6 -4.6 -47.9 -65.3 0.3 -8.7 -2.9 71 71 A Y E -b 3 0A 126 -69,-0.2 2,-0.3 -67,-0.1 -67,-0.2 -0.974 59.4-172.6-141.2 149.0 2.7 -9.3 -5.9 72 72 A H E -b 4 0A 3 -69,-2.0 -67,-2.1 -2,-0.3 2,-0.7 -0.953 16.9-144.6-147.2 119.0 2.4 -9.3 -9.7 73 73 A M E -b 5 0A 103 -2,-0.3 -22,-0.6 -69,-0.2 2,-0.4 -0.787 25.1-179.7 -89.8 109.5 5.0 -10.2 -12.5 74 74 A V E -bD 6 50A 1 -69,-2.5 -67,-2.6 -2,-0.7 2,-0.5 -0.933 19.8-139.7-107.3 134.1 4.4 -8.0 -15.5 75 75 A H E -bD 7 49A 74 -26,-2.9 -26,-2.5 -2,-0.4 -67,-0.2 -0.855 15.3-136.5 -96.1 124.2 6.6 -8.3 -18.7 76 76 A L E D 0 48A 10 -69,-2.7 -28,-0.2 -2,-0.5 -30,-0.0 -0.509 360.0 360.0 -75.7 145.7 7.6 -5.0 -20.4 77 77 A V 0 0 73 -30,-1.7 -1,-0.1 -2,-0.2 -31,-0.1 0.522 360.0 360.0-134.8 360.0 7.4 -4.9 -24.3