==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER UNKNOWN FUNCTION 12-JAN-09 2KDM . COMPND 2 MOLECULE: DESIGNED PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR Y.HE,P.ALEXANDER,Y.CHEN,P.BRYAN,J.ORBAN . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4224.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 73.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 15 26.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 89 0, 0.0 19,-2.5 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 144.7 5.1 -13.2 3.5 2 2 A T E -A 19 0A 90 17,-0.2 2,-0.3 47,-0.1 17,-0.2 -0.893 360.0-160.8-114.3 142.4 5.7 -10.0 1.6 3 3 A Y E -A 18 0A 13 15,-2.2 15,-1.5 -2,-0.4 2,-0.3 -0.906 1.9-156.0-122.2 149.9 3.1 -7.4 0.7 4 4 A K E -Ab 17 51A 84 46,-1.3 48,-2.9 -2,-0.3 2,-0.4 -0.917 0.5-158.4-125.8 151.3 3.1 -4.6 -2.0 5 5 A L E -Ab 16 52A 2 11,-2.5 11,-2.1 -2,-0.3 2,-0.7 -0.994 7.0-151.5-133.3 129.7 1.2 -1.4 -2.3 6 6 A I E -Ab 15 53A 44 46,-2.0 48,-2.4 -2,-0.4 2,-0.6 -0.867 14.2-164.2-103.4 107.5 0.5 0.7 -5.4 7 7 A L E +Ab 14 54A 4 7,-2.8 7,-0.9 -2,-0.7 2,-0.5 -0.809 9.0 179.5 -95.2 123.5 0.2 4.4 -4.7 8 8 A N E +Ab 13 55A 59 46,-2.2 48,-2.4 -2,-0.6 5,-0.2 -0.892 10.7 166.1-127.2 101.3 -1.4 6.5 -7.4 9 9 A L E > -A 12 0A 31 3,-2.2 3,-0.9 -2,-0.5 32,-0.0 -0.452 55.9 -76.6-105.4 179.6 -1.8 10.2 -6.7 10 10 A K T 3 S- 0 0 168 1,-0.3 2,-0.1 -2,-0.1 3,-0.0 0.882 124.2 -0.4 -40.8 -53.9 -2.5 13.3 -8.8 11 11 A Q T 3 S+ 0 0 184 1,-0.0 -1,-0.3 0, 0.0 2,-0.2 -0.530 120.5 57.5-143.5 73.7 1.0 13.4 -10.2 12 12 A A E < -A 9 0A 47 -3,-0.9 -3,-2.2 -2,-0.1 2,-0.4 -0.774 51.7-150.2 169.0 146.2 3.2 10.6 -8.8 13 13 A K E +A 8 0A 116 -2,-0.2 2,-0.3 -5,-0.2 -5,-0.2 -0.908 22.7 169.9-136.8 107.3 3.4 6.8 -8.5 14 14 A E E -A 7 0A 109 -7,-0.9 -7,-2.8 -2,-0.4 2,-0.5 -0.874 22.3-141.3-118.1 150.6 5.2 5.2 -5.5 15 15 A E E -A 6 0A 116 -2,-0.3 2,-0.4 -9,-0.2 -9,-0.2 -0.942 11.8-162.2-115.2 128.6 5.3 1.6 -4.3 16 16 A A E +A 5 0A 9 -11,-2.1 -11,-2.5 -2,-0.5 2,-0.3 -0.879 16.0 168.4-109.5 138.8 5.2 0.5 -0.7 17 17 A I E +A 4 0A 97 -2,-0.4 2,-0.3 -13,-0.2 -13,-0.2 -0.958 10.9 175.3-146.0 162.7 6.2 -2.9 0.6 18 18 A K E -A 3 0A 53 -15,-1.5 -15,-2.2 -2,-0.3 2,-0.6 -0.917 25.6-130.4-168.8 140.6 7.0 -4.8 3.8 19 19 A E E +A 2 0A 143 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.871 42.8 147.1-102.1 116.1 7.9 -8.3 4.9 20 20 A A - 0 0 15 -19,-2.5 -2,-0.1 -2,-0.6 4,-0.0 -0.877 57.8-112.4-139.9 171.2 5.8 -9.7 7.7 21 21 A V S S+ 0 0 132 -2,-0.3 2,-0.3 -19,-0.0 -19,-0.1 0.117 98.0 4.2 -92.3 20.9 4.4 -13.0 9.0 22 22 A D S S- 0 0 105 -21,-0.3 -2,-0.2 1,-0.1 4,-0.1 -0.936 78.7 -97.0-174.2-166.6 0.8 -11.8 8.3 23 23 A A S >> S+ 0 0 38 -2,-0.3 4,-3.7 2,-0.1 3,-0.9 0.772 105.5 71.2-103.6 -38.0 -1.4 -9.0 6.9 24 24 A G H 3> S+ 0 0 37 1,-0.3 4,-1.6 2,-0.2 5,-0.2 0.821 104.3 46.1 -48.5 -33.0 -2.2 -7.1 10.0 25 25 A T H 3> S+ 0 0 75 2,-0.2 4,-1.0 3,-0.2 -1,-0.3 0.771 114.5 47.3 -80.8 -27.8 1.4 -6.0 10.0 26 26 A A H <> S+ 0 0 0 -3,-0.9 4,-2.9 3,-0.2 -2,-0.2 0.885 115.1 44.6 -79.5 -41.3 1.3 -5.2 6.3 27 27 A E H X S+ 0 0 102 -4,-3.7 4,-3.8 2,-0.2 5,-0.2 0.981 116.7 43.4 -66.1 -58.8 -2.0 -3.2 6.5 28 28 A K H X S+ 0 0 146 -4,-1.6 4,-1.2 -5,-0.3 -1,-0.2 0.874 119.7 45.2 -55.0 -39.2 -1.2 -1.2 9.6 29 29 A Y H X S+ 0 0 95 -4,-1.0 4,-1.6 -5,-0.2 -1,-0.2 0.916 114.6 47.1 -71.8 -43.3 2.3 -0.6 8.2 30 30 A F H X S+ 0 0 0 -4,-2.9 4,-3.7 1,-0.2 -2,-0.2 0.918 108.6 55.7 -63.3 -43.5 1.1 0.2 4.7 31 31 A K H X S+ 0 0 104 -4,-3.8 4,-2.0 1,-0.2 5,-0.3 0.838 105.5 53.2 -57.6 -34.5 -1.6 2.5 6.2 32 32 A L H X S+ 0 0 115 -4,-1.2 4,-1.0 -5,-0.2 -1,-0.2 0.880 116.5 36.9 -69.7 -38.6 1.2 4.4 7.9 33 33 A I H X S+ 0 0 60 -4,-1.6 4,-1.2 -3,-0.2 -2,-0.2 0.850 117.8 51.6 -81.4 -36.5 3.2 4.9 4.7 34 34 A A H >X S+ 0 0 6 -4,-3.7 4,-3.7 2,-0.2 3,-1.0 0.989 115.4 38.3 -62.8 -62.2 0.1 5.5 2.6 35 35 A N H 3< S+ 0 0 97 -4,-2.0 -1,-0.2 1,-0.3 -2,-0.2 0.856 115.7 55.2 -57.6 -37.0 -1.5 8.2 4.7 36 36 A A H 3< S+ 0 0 83 -4,-1.0 -1,-0.3 -5,-0.3 -2,-0.2 0.748 118.4 34.3 -68.8 -23.9 1.9 9.6 5.4 37 37 A K H << S- 0 0 121 -4,-1.2 2,-0.2 -3,-1.0 -2,-0.2 0.744 134.0 -1.3 -99.8 -32.0 2.5 9.9 1.6 38 38 A T < - 0 0 22 -4,-3.7 -1,-0.2 -5,-0.2 3,-0.1 -0.837 46.4-149.7-146.2-177.4 -1.1 10.7 0.5 39 39 A V S S+ 0 0 110 -2,-0.2 2,-0.2 1,-0.2 -4,-0.1 -0.051 74.4 53.3-153.6 37.9 -4.7 11.2 1.8 40 40 A E + 0 0 131 14,-0.1 2,-0.3 2,-0.0 -1,-0.2 -0.840 59.6 98.5-174.8 135.1 -7.0 10.0 -1.0 41 41 A G - 0 0 31 -2,-0.2 2,-0.8 14,-0.1 15,-0.3 -0.913 65.4 -74.8 162.3 172.8 -7.5 7.0 -3.2 42 42 A V E -C 55 0A 82 13,-1.0 13,-1.1 -2,-0.3 2,-0.4 -0.860 43.3-140.1-101.8 107.5 -9.3 3.8 -3.8 43 43 A W E +C 54 0A 122 -2,-0.8 2,-0.3 11,-0.2 11,-0.2 -0.522 38.0 152.7 -69.4 118.9 -8.3 1.1 -1.4 44 44 A T E -C 53 0A 71 9,-2.7 9,-3.2 -2,-0.4 2,-0.4 -0.925 29.9-147.1-142.6 165.7 -8.0 -2.3 -3.2 45 45 A Y E -C 52 0A 93 7,-0.3 2,-0.5 -2,-0.3 7,-0.3 -0.988 10.0-140.5-143.3 131.6 -6.1 -5.6 -2.9 46 46 A K E > -C 51 0A 113 5,-2.9 5,-1.4 -2,-0.4 2,-0.7 -0.774 17.9-137.1 -92.9 128.9 -4.9 -8.0 -5.5 47 47 A D T 5S+ 0 0 128 -2,-0.5 5,-0.0 1,-0.2 -2,-0.0 -0.767 79.6 55.0 -89.4 113.5 -5.2 -11.7 -4.7 48 48 A E T 5S+ 0 0 130 -2,-0.7 -1,-0.2 3,-0.0 -2,-0.0 -0.266 117.5 18.4 165.9 -63.3 -2.0 -13.7 -5.7 49 49 A I T 5S- 0 0 89 -3,-0.2 -2,-0.1 2,-0.0 -45,-0.1 0.122 111.2-100.9-117.7 17.3 1.1 -12.2 -4.1 50 50 A K T 5 + 0 0 79 -4,-0.4 -46,-1.3 1,-0.2 2,-0.3 0.965 63.7 156.3 61.0 90.5 -0.8 -10.2 -1.4 51 51 A T E < -bC 4 46A 12 -5,-1.4 -5,-2.9 -48,-0.2 2,-0.3 -0.999 26.7-159.8-149.2 146.2 -0.9 -6.6 -2.5 52 52 A F E -bC 5 45A 24 -48,-2.9 -46,-2.0 -2,-0.3 2,-0.3 -0.813 9.1-163.3-120.6 160.9 -3.1 -3.5 -1.9 53 53 A T E -bC 6 44A 17 -9,-3.2 -9,-2.7 -2,-0.3 2,-0.4 -0.995 13.1-159.6-146.7 152.4 -3.6 -0.3 -3.9 54 54 A V E -bC 7 43A 9 -48,-2.4 -46,-2.2 -2,-0.3 2,-0.5 -0.884 14.2-174.1-135.7 100.6 -4.9 3.2 -3.5 55 55 A T E bC 8 42A 53 -13,-1.1 -13,-1.0 -2,-0.4 -46,-0.2 -0.856 360.0 360.0-101.0 124.7 -5.9 5.1 -6.7 56 56 A E 0 0 119 -48,-2.4 -15,-0.1 -2,-0.5 -2,-0.0 -0.846 360.0 360.0 -98.0 360.0 -6.9 8.7 -6.4