==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 30-JAN-09 2KEH . COMPND 2 MOLECULE: PLNK; . SOURCE 2 SYNTHETIC: YES; . AUTHOR P.ROGNE,M.HAUGEN,J.NISSEN-MEYER,P.KRISTIANSEN . 32 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4082.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 62.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 46.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R > 0 0 289 0, 0.0 2,-1.5 0, 0.0 3,-0.8 0.000 360.0 360.0 360.0 -31.8 2.1 0.0 -1.2 2 2 A R T 3 + 0 0 220 1,-0.2 3,-0.0 3,-0.1 0, 0.0 -0.621 360.0 71.4 -81.3 90.0 4.9 2.1 0.2 3 3 A S T 3> S+ 0 0 82 -2,-1.5 2,-1.4 3,-0.0 4,-0.9 0.259 72.1 74.8-165.1 -39.8 7.4 -0.5 1.3 4 4 A R T <4 S+ 0 0 241 -3,-0.8 -2,-0.1 1,-0.2 0, 0.0 -0.317 113.0 24.6 -85.7 53.3 9.0 -2.1 -1.7 5 5 A K T 4 S+ 0 0 195 -2,-1.4 -1,-0.2 -3,-0.0 -3,-0.1 0.137 102.4 74.1-176.1 -42.9 11.2 0.9 -2.3 6 6 A N T 4 S- 0 0 125 4,-0.0 5,-0.2 5,-0.0 -2,-0.1 0.824 88.6-143.2 -58.5 -32.0 11.7 2.9 0.9 7 7 A G < - 0 0 13 -4,-0.9 5,-0.3 3,-0.1 4,-0.2 0.911 11.2-146.5 65.3 100.2 14.0 0.2 2.0 8 8 A I S S- 0 0 144 -5,-0.2 -1,-0.1 1,-0.2 -4,-0.0 0.878 93.9 -12.5 -63.1 -38.9 13.8 -0.6 5.8 9 9 A G S > S+ 0 0 44 3,-0.1 4,-0.6 2,-0.0 -1,-0.2 0.156 111.8 98.4-150.2 20.3 17.5 -1.4 5.9 10 10 A Y H > S+ 0 0 187 3,-0.2 4,-1.3 2,-0.1 -3,-0.1 0.972 97.0 25.3 -75.8 -59.3 18.6 -1.7 2.3 11 11 A A H > S+ 0 0 69 -5,-0.2 4,-1.8 2,-0.2 5,-0.2 0.951 125.4 49.6 -70.6 -51.4 20.1 1.8 1.8 12 12 A I H > S+ 0 0 99 -5,-0.3 4,-1.7 1,-0.2 -1,-0.1 0.932 114.1 45.5 -53.4 -50.8 20.9 2.5 5.5 13 13 A G H X S+ 0 0 34 -4,-0.6 4,-2.4 1,-0.2 -1,-0.2 0.828 105.0 64.2 -63.5 -32.1 22.6 -0.9 5.9 14 14 A Y H X S+ 0 0 193 -4,-1.3 4,-0.9 1,-0.2 -1,-0.2 0.945 107.9 39.0 -56.6 -52.1 24.5 -0.4 2.6 15 15 A A H X S+ 0 0 59 -4,-1.8 4,-2.1 1,-0.2 -1,-0.2 0.825 112.0 60.0 -68.1 -32.0 26.4 2.7 3.9 16 16 A F H X S+ 0 0 130 -4,-1.7 4,-1.1 -5,-0.2 -2,-0.2 0.907 99.9 54.7 -62.8 -43.2 26.8 1.0 7.3 17 17 A G H X S+ 0 0 24 -4,-2.4 4,-1.1 1,-0.2 -1,-0.2 0.823 109.5 48.4 -60.6 -31.8 28.7 -2.0 5.8 18 18 A A H X S+ 0 0 56 -4,-0.9 4,-1.7 2,-0.2 -1,-0.2 0.900 101.1 61.9 -75.2 -42.9 31.2 0.5 4.3 19 19 A V H X S+ 0 0 91 -4,-2.1 4,-0.9 1,-0.2 -1,-0.2 0.788 104.9 51.7 -53.6 -28.2 31.7 2.4 7.5 20 20 A E H X S+ 0 0 126 -4,-1.1 4,-2.6 2,-0.2 3,-0.4 0.914 103.3 54.4 -75.7 -45.5 33.1 -0.8 8.9 21 21 A R H X S+ 0 0 195 -4,-1.1 4,-1.7 1,-0.2 5,-0.3 0.798 101.4 63.5 -58.7 -28.9 35.5 -1.5 6.1 22 22 A A H X S+ 0 0 60 -4,-1.7 4,-1.3 1,-0.2 -1,-0.2 0.940 113.1 31.0 -61.5 -49.3 37.0 1.9 6.8 23 23 A V H < S+ 0 0 71 -4,-0.9 -2,-0.2 -3,-0.4 -1,-0.2 0.765 109.9 70.8 -80.4 -27.2 38.1 1.1 10.3 24 24 A L H < S+ 0 0 144 -4,-2.6 3,-0.2 1,-0.1 -2,-0.2 0.926 111.5 28.3 -54.9 -48.5 38.7 -2.6 9.4 25 25 A G H < S+ 0 0 69 -4,-1.7 2,-0.7 1,-0.3 -2,-0.2 0.980 134.3 23.5 -77.9 -64.3 41.7 -1.6 7.3 26 26 A G S < S- 0 0 45 -4,-1.3 -1,-0.3 -5,-0.3 -2,-0.1 -0.892 84.4-127.9-111.7 107.6 43.1 1.5 8.9 27 27 A S - 0 0 99 -2,-0.7 2,-1.8 -3,-0.2 -4,-0.1 -0.260 21.0-128.8 -52.2 123.5 42.1 2.0 12.5 28 28 A R S S+ 0 0 196 2,-0.0 2,-0.3 0, 0.0 -1,-0.1 -0.560 74.1 80.9 -79.2 82.8 40.6 5.5 12.9 29 29 A D + 0 0 142 -2,-1.8 2,-0.2 0, 0.0 -2,-0.0 -0.874 38.7 162.5 180.0 147.0 42.7 6.8 15.8 30 30 A Y + 0 0 223 -2,-0.3 2,-0.2 1,-0.0 -2,-0.0 -0.641 21.4 123.2-177.6 114.5 46.1 8.3 16.5 31 31 A N 0 0 154 -2,-0.2 -1,-0.0 1,-0.1 0, 0.0 -0.639 360.0 360.0-179.7 116.8 47.4 10.2 19.6 32 32 A K 0 0 263 -2,-0.2 -1,-0.1 0, 0.0 0, 0.0 -0.310 360.0 360.0 53.6 360.0 50.3 9.6 21.9