==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 26-FEB-09 2KFQ . COMPND 2 MOLECULE: FP1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.ARAKI,A.TAMURA . 32 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3047.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 9 28.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 170 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-170.9 -8.4 -10.8 -15.0 2 2 A A + 0 0 92 3,-0.1 0, 0.0 1,-0.1 0, 0.0 -0.409 360.0 70.3-147.1 61.7 -6.7 -10.6 -11.7 3 3 A F S S+ 0 0 167 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.087 118.6 0.1-166.1 30.0 -3.2 -9.3 -12.3 4 4 A A S S+ 0 0 55 -3,-0.1 4,-0.2 0, 0.0 -2,-0.0 0.083 104.7 91.0 169.6 -30.0 -3.6 -5.6 -13.2 5 5 A C S S+ 0 0 72 2,-0.1 3,-0.2 1,-0.0 -3,-0.1 0.952 106.9 19.7 -48.9 -58.8 -7.4 -5.0 -13.1 6 6 A P S S+ 0 0 71 0, 0.0 2,-2.0 0, 0.0 -4,-0.0 0.946 71.1 144.1 -75.0 -89.7 -7.1 -4.0 -9.4 7 7 A A S S+ 0 0 74 1,-0.1 -2,-0.1 5,-0.0 -5,-0.0 -0.503 87.0 11.4 83.9 -69.2 -3.6 -3.0 -8.5 8 8 A C S S+ 0 0 99 -2,-2.0 -1,-0.1 -3,-0.2 0, 0.0 -0.727 82.0 177.6-145.2 88.5 -4.7 -0.3 -6.2 9 9 A P > - 0 0 31 0, 0.0 4,-0.7 0, 0.0 0, 0.0 0.153 46.4 -98.6 -75.0-163.4 -8.4 -0.3 -5.3 10 10 A K T 4 S+ 0 0 147 2,-0.1 -2,-0.0 1,-0.1 0, 0.0 0.325 121.0 51.6-101.1 3.5 -10.3 2.0 -3.0 11 11 A R T >> S+ 0 0 189 2,-0.1 4,-0.7 3,-0.1 3,-0.6 0.730 105.9 50.2-106.2 -36.6 -10.1 -0.6 -0.2 12 12 A F H >> S+ 0 0 109 1,-0.2 3,-0.9 2,-0.2 4,-0.6 0.898 96.5 68.7 -69.5 -42.7 -6.4 -1.4 -0.3 13 13 A M H 3X S+ 0 0 71 -4,-0.7 4,-1.0 1,-0.3 -1,-0.2 0.723 95.8 60.4 -48.4 -22.7 -5.4 2.3 -0.1 14 14 A R H <4 S+ 0 0 153 -3,-0.6 3,-0.4 1,-0.2 -1,-0.3 0.937 108.8 37.7 -71.6 -49.4 -6.9 2.1 3.4 15 15 A S H << S+ 0 0 83 -3,-0.9 -1,-0.2 -4,-0.7 -2,-0.2 0.288 117.4 56.3 -84.5 9.7 -4.5 -0.6 4.6 16 16 A D H >< S+ 0 0 61 -4,-0.6 3,-0.9 -3,-0.2 -1,-0.2 0.566 89.5 70.1-111.7 -20.1 -1.8 1.1 2.6 17 17 A A T 3< S+ 0 0 75 -4,-1.0 -2,-0.1 -3,-0.4 -1,-0.1 0.010 114.4 28.9 -87.2 28.0 -2.1 4.5 4.2 18 18 A L T 3 S+ 0 0 77 -3,-0.1 -1,-0.3 3,-0.0 -2,-0.1 0.089 109.9 65.8-175.3 34.6 -0.6 3.0 7.3 19 19 A S S < S+ 0 0 56 -3,-0.9 -2,-0.1 3,-0.1 -4,-0.1 0.079 87.4 65.3-150.9 21.9 1.7 0.2 6.1 20 20 A K S S+ 0 0 88 -4,-0.1 10,-0.1 4,-0.0 5,-0.1 0.044 123.2 6.1-134.4 21.3 4.3 2.1 4.2 21 21 A H S > S+ 0 0 93 9,-0.2 3,-1.3 10,-0.1 5,-0.1 0.191 123.5 59.3-167.4 -44.0 5.8 4.0 7.1 22 22 A I T 3 S+ 0 0 83 1,-0.3 -3,-0.1 8,-0.1 8,-0.0 0.690 97.7 66.2 -73.0 -19.2 4.3 2.8 10.3 23 23 A K T 3 S- 0 0 163 7,-0.1 -1,-0.3 6,-0.1 2,-0.2 0.375 128.2 -15.9 -81.7 4.1 5.6 -0.6 9.4 24 24 A T S < S- 0 0 57 -3,-1.3 -3,-0.1 2,-0.1 -4,-0.0 -0.544 72.7-110.0-164.5-127.6 9.0 0.8 9.9 25 25 A A S S+ 0 0 88 -2,-0.2 2,-0.3 -5,-0.1 -3,-0.1 0.048 76.9 44.0 167.7 64.7 10.5 4.3 10.2 26 26 A F S S- 0 0 88 -5,-0.1 2,-0.4 0, 0.0 5,-0.3 -0.928 86.0 -75.7 179.5-158.0 12.7 5.3 7.2 27 27 A I S S+ 0 0 128 -2,-0.3 -6,-0.1 3,-0.1 0, 0.0 -0.782 95.6 68.7-134.7 88.7 12.9 5.3 3.4 28 28 A V S S+ 0 0 101 -2,-0.4 -1,-0.1 4,-0.1 0, 0.0 0.209 116.8 4.8-161.7 -51.9 13.7 1.8 2.0 29 29 A V S S+ 0 0 109 2,-0.1 -2,-0.1 -8,-0.0 -8,-0.1 0.229 117.0 77.4-129.1 5.9 10.8 -0.6 2.5 30 30 A A S S+ 0 0 6 2,-0.1 -9,-0.2 -10,-0.1 -3,-0.1 0.961 104.1 24.6 -79.1 -79.7 8.4 1.9 4.0 31 31 A L 0 0 113 -5,-0.3 -10,-0.1 1,-0.1 -4,-0.1 0.940 360.0 360.0 -50.4 -54.7 7.0 4.0 1.1 32 32 A G 0 0 78 -12,-0.1 -1,-0.1 0, 0.0 -2,-0.1 -0.854 360.0 360.0 175.1 360.0 7.8 1.1 -1.3