==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-APR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 01-APR-09 2KHB . COMPND 2 MOLECULE: KALATA-B1; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR C.K.WANG,D.J.CRAIK . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2280.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 9 31.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 127 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 137.0 6.4 11.9 -5.4 2 2 A L - 0 0 170 1,-0.1 2,-0.2 2,-0.0 0, 0.0 -0.606 360.0-122.9 -75.8 123.0 5.6 8.6 -7.2 3 3 A P - 0 0 84 0, 0.0 -1,-0.1 0, 0.0 24,-0.0 -0.464 11.6-153.7 -68.7 131.6 4.3 6.0 -4.7 4 4 A V S S+ 0 0 127 24,-0.2 2,-0.2 -2,-0.2 23,-0.1 0.918 82.0 47.8 -70.1 -44.7 6.2 2.8 -4.6 5 5 A a + 0 0 7 23,-0.1 23,-0.1 1,-0.1 15,-0.0 -0.622 52.7 159.1 -95.5 156.2 3.3 0.7 -3.4 6 6 A G + 0 0 61 -2,-0.2 2,-0.3 21,-0.1 21,-0.1 0.226 25.6 133.1-162.3 17.9 -0.2 0.9 -4.9 7 7 A E - 0 0 43 19,-0.2 19,-3.4 1,-0.1 2,-0.4 -0.593 62.0-111.6 -79.5 137.0 -2.0 -2.3 -4.0 8 8 A T B -A 25 0A 96 -2,-0.3 3,-0.5 17,-0.2 17,-0.3 -0.553 20.6-160.0 -71.7 122.4 -5.5 -1.8 -2.8 9 9 A b > + 0 0 0 15,-0.6 3,-1.7 -2,-0.4 16,-0.2 -0.142 51.0 127.6 -93.1 37.1 -5.7 -2.7 0.9 10 10 A V T 3 S+ 0 0 87 14,-0.5 -1,-0.2 1,-0.3 15,-0.1 0.899 77.0 42.9 -60.4 -41.1 -9.5 -3.2 0.7 11 11 A G T 3 S- 0 0 68 -3,-0.5 -1,-0.3 2,-0.2 3,-0.1 0.071 125.1-100.8 -93.9 24.9 -9.2 -6.6 2.2 12 12 A G S < S+ 0 0 58 -3,-1.7 2,-0.3 1,-0.2 -2,-0.1 0.920 87.1 110.8 58.9 47.9 -6.7 -5.5 4.9 13 13 A T - 0 0 93 -5,-0.1 2,-0.4 -6,-0.0 -1,-0.2 -0.993 49.3-156.1-151.0 154.1 -3.7 -6.8 3.1 14 14 A c - 0 0 37 -2,-0.3 7,-0.1 1,-0.1 4,-0.1 -0.994 7.1-159.2-134.5 138.1 -0.6 -5.6 1.2 15 15 A N S S+ 0 0 132 -2,-0.4 -1,-0.1 1,-0.1 -10,-0.0 0.938 76.7 70.3 -79.9 -54.0 1.5 -7.4 -1.4 16 16 A T S > S- 0 0 52 1,-0.1 3,-2.2 2,-0.1 2,-0.2 -0.568 86.5-127.2 -73.1 115.1 4.8 -5.5 -1.2 17 17 A P T 3 S+ 0 0 127 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.424 96.4 34.6 -63.7 121.9 6.6 -6.3 2.1 18 18 A G T 3 S+ 0 0 39 1,-0.4 2,-0.4 -2,-0.2 11,-0.3 0.161 88.9 116.5 117.1 -16.1 7.4 -3.0 3.8 19 19 A a < - 0 0 15 -3,-2.2 -1,-0.4 9,-0.1 9,-0.3 -0.727 58.8-137.7 -89.1 132.4 4.3 -1.2 2.6 20 20 A T E -B 27 0A 71 7,-2.4 7,-3.3 -2,-0.4 2,-0.4 -0.637 22.1-110.2 -88.8 145.0 1.9 -0.0 5.3 21 21 A b E +B 26 0A 60 -2,-0.3 5,-0.2 5,-0.2 2,-0.2 -0.622 35.8 172.8 -78.5 126.4 -1.9 -0.4 4.9 22 22 A S E > -B 25 0A 50 3,-1.6 3,-2.1 -2,-0.4 -13,-0.1 -0.624 50.8 -93.6-132.7 67.9 -3.7 2.9 4.4 23 23 A W T 3 S+ 0 0 183 1,-0.4 -13,-0.1 -2,-0.2 -15,-0.1 0.136 109.3 13.6 -29.1 127.9 -7.2 1.7 3.6 24 24 A P T 3 S+ 0 0 61 0, 0.0 -15,-0.6 0, 0.0 -14,-0.5 -0.855 133.4 40.2 -97.0 32.8 -8.1 1.3 0.9 25 25 A V E < -AB 8 22A 68 -3,-2.1 -3,-1.6 -17,-0.3 2,-0.3 -0.996 68.7-129.0-140.7 139.4 -4.5 1.5 -0.5 26 26 A c E + B 0 21A 2 -19,-3.4 2,-0.3 -2,-0.4 -5,-0.2 -0.639 34.2 167.2 -83.4 137.8 -1.1 0.2 0.6 27 27 A T E - B 0 20A 51 -7,-3.3 -7,-2.4 -2,-0.3 2,-0.5 -0.996 32.5-124.9-150.8 149.1 1.8 2.7 0.8 28 28 A R 0 0 150 -2,-0.3 -24,-0.2 -9,-0.3 -9,-0.1 -0.851 360.0 360.0-100.2 125.2 5.3 2.8 2.3 29 29 A N 0 0 161 -2,-0.5 -1,-0.0 -11,-0.3 0, 0.0 -0.409 360.0 360.0 -69.6 360.0 6.1 5.6 4.7