==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 03-DEC-01 1KIO . COMPND 2 MOLECULE: SERINE PROTEASE INHIBITOR I; . SOURCE 2 SYNTHETIC: YES; . AUTHOR Z.GASPARI,A.PATTHY,L.GRAF,A.PERCZEL . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2993.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 216 0, 0.0 2,-0.8 0, 0.0 24,-0.1 0.000 360.0 360.0 360.0 87.1 6.0 3.9 7.0 2 2 A V + 0 0 37 1,-0.1 22,-0.6 22,-0.1 23,-0.1 -0.772 360.0 175.8 -92.1 112.6 3.6 1.2 5.7 3 3 A T + 0 0 137 -2,-0.8 -1,-0.1 21,-0.1 2,-0.1 0.068 41.9 120.6-101.2 25.8 1.5 -0.2 8.6 4 4 A a S S- 0 0 33 1,-0.1 20,-0.5 4,-0.0 21,-0.1 -0.378 70.1-101.6 -84.2 167.6 -0.6 -2.4 6.2 5 5 A E - 0 0 149 18,-0.1 2,-0.4 -2,-0.1 14,-0.1 -0.768 33.1-118.1 -93.7 133.6 -0.9 -6.2 6.5 6 6 A P S S+ 0 0 43 0, 0.0 15,-0.2 0, 0.0 14,-0.2 -0.534 91.8 61.0 -70.8 119.6 1.1 -8.3 4.1 7 7 A G S S+ 0 0 69 12,-1.0 2,-0.3 -2,-0.4 13,-0.1 0.573 93.5 51.6 132.4 38.3 -1.2 -10.4 2.0 8 8 A T E -A 19 0A 66 11,-0.7 11,-0.9 12,-0.2 -1,-0.4 -0.990 64.9-121.0-176.5 177.4 -3.4 -7.9 -0.0 9 9 A T E +A 18 0A 65 9,-0.3 2,-0.3 -2,-0.3 9,-0.2 -0.988 26.4 172.3-137.5 146.2 -3.5 -4.9 -2.3 10 10 A F - 0 0 54 7,-0.6 2,-1.7 -2,-0.3 7,-0.4 -0.998 40.7-109.1-154.7 149.7 -5.3 -1.5 -1.9 11 11 A K + 0 0 173 -2,-0.3 5,-0.2 5,-0.2 2,-0.2 -0.558 57.3 155.5 -80.9 85.4 -5.5 1.9 -3.6 12 12 A D B > -C 15 0B 77 -2,-1.7 3,-2.1 3,-0.7 -2,-0.0 -0.543 51.5 -0.6-104.4 174.2 -3.5 4.0 -1.1 13 13 A K T 3 S- 0 0 126 1,-0.2 18,-0.1 -2,-0.2 4,-0.1 -0.152 125.8 -43.4 45.8-135.6 -1.6 7.3 -1.6 14 14 A b T 3 S+ 0 0 50 16,-0.1 2,-0.3 2,-0.1 -1,-0.2 0.086 130.0 39.0-111.8 24.4 -1.9 8.2 -5.3 15 15 A N B < S-C 12 0B 8 -3,-2.1 -3,-0.7 16,-0.1 -5,-0.1 -0.980 93.8 -84.8-164.6 153.7 -1.3 4.7 -6.6 16 16 A T - 0 0 48 -2,-0.3 14,-0.3 -5,-0.2 -5,-0.2 0.104 36.8-160.5 -51.5 179.1 -2.2 1.0 -5.7 17 17 A c - 0 0 6 -7,-0.4 2,-1.2 11,-0.3 -7,-0.6 -0.464 10.5-152.7-168.8 88.2 0.1 -0.8 -3.2 18 18 A R E -A 9 0A 150 -9,-0.2 9,-1.1 1,-0.1 -9,-0.3 -0.484 33.8-121.9 -68.0 98.2 0.2 -4.6 -2.9 19 19 A a E -AB 8 26A 4 -2,-1.2 -12,-1.0 -11,-0.9 -11,-0.7 -0.129 31.4-123.1 -41.9 117.7 1.1 -5.0 0.7 20 20 A G - 0 0 22 5,-2.4 -13,-0.4 -14,-0.2 -12,-0.2 0.176 20.0-108.2 -52.7-174.2 4.4 -7.0 0.5 21 21 A S S S+ 0 0 97 -15,-0.2 -1,-0.1 2,-0.1 5,-0.1 0.405 114.1 49.9-101.9 2.5 4.6 -10.4 2.4 22 22 A D S S- 0 0 140 3,-0.3 -1,-0.1 1,-0.1 2,-0.1 0.639 107.1-119.4-111.4 -21.9 6.9 -9.1 5.1 23 23 A G S S+ 0 0 16 2,-0.4 -18,-0.1 -18,-0.1 -2,-0.1 -0.095 88.9 57.0 99.3 157.2 5.1 -5.9 6.2 24 24 A K S S+ 0 0 160 -22,-0.6 2,-0.2 -20,-0.5 -21,-0.1 0.872 98.8 81.4 53.7 34.8 6.3 -2.3 6.1 25 25 A S + 0 0 69 -21,-0.1 -5,-2.4 -23,-0.1 -2,-0.4 -0.733 51.8 171.2-170.2 116.4 6.9 -2.7 2.3 26 26 A A B -B 19 0A 31 -7,-0.3 -7,-0.2 -2,-0.2 -17,-0.1 -0.872 29.3-139.2-127.3 161.8 4.5 -2.6 -0.6 27 27 A A - 0 0 72 -9,-1.1 -1,-0.1 -2,-0.3 -8,-0.1 0.945 32.3-178.1 -85.0 -56.2 4.9 -2.6 -4.5 28 28 A c - 0 0 33 1,-0.1 -11,-0.3 -18,-0.0 -12,-0.1 0.546 40.6-106.5 63.8 136.8 2.3 -0.0 -5.6 29 29 A T S S- 0 0 103 1,-0.1 2,-0.2 0, 0.0 -1,-0.1 0.940 86.8 -37.0 -62.2 -45.3 1.9 0.7 -9.3 30 30 A R - 0 0 159 -14,-0.3 2,-0.2 0, 0.0 -16,-0.1 -0.749 59.5-100.5-155.4-156.8 3.7 4.1 -9.1 31 31 A M + 0 0 169 -2,-0.2 -16,-0.1 -17,-0.1 -18,-0.1 -0.670 48.5 141.6-146.5 88.5 4.1 7.1 -6.9 32 32 A A + 0 0 45 -2,-0.2 -1,-0.1 1,-0.1 -19,-0.0 0.146 46.2 100.5-113.6 19.8 2.1 10.3 -7.8 33 33 A b - 0 0 27 1,-0.1 2,-2.4 -18,-0.0 -1,-0.1 -0.764 47.7-173.6-110.5 91.1 1.3 11.4 -4.2 34 34 A P 0 0 122 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 -0.244 360.0 360.0 -75.2 52.2 3.6 14.2 -3.3 35 35 A Q 0 0 217 -2,-2.4 -2,-0.0 0, 0.0 0, 0.0 0.698 360.0 360.0-103.9 360.0 2.3 14.2 0.3