==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 28-APR-09 2KI9 . COMPND 2 MOLECULE: CANNABINOID RECEPTOR 2; . SOURCE 2 SYNTHETIC: YES . AUTHOR L.DESHMUKH,O.VINOGRADOVA,E.K.TIBURU,S.TYUKHTENKO,D.R.JANERO, . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3021.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 51.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 39.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 62 0, 0.0 4,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-159.7 11.9 -1.5 0.7 2 2 A V + 0 0 137 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.740 360.0 39.2-105.3 -27.8 9.4 -1.2 3.6 3 3 A R S S- 0 0 162 1,-0.0 2,-0.1 0, 0.0 0, 0.0 0.975 141.7 -46.8 -76.2 -68.7 8.6 2.3 2.6 4 4 A L S S- 0 0 118 0, 0.0 -1,-0.0 0, 0.0 0, 0.0 -0.063 70.2 -83.9-132.3-122.7 8.6 1.7 -1.2 5 5 A A S S+ 0 0 65 -2,-0.1 0, 0.0 -3,-0.1 0, 0.0 -0.121 110.7 42.5-149.8 40.6 11.2 -0.1 -3.3 6 6 A K S > S+ 0 0 148 3,-0.1 4,-4.2 4,-0.0 5,-0.3 0.392 96.0 61.7-152.0 -50.1 13.9 2.5 -4.0 7 7 A T H > S+ 0 0 66 2,-0.2 4,-2.6 1,-0.2 5,-0.1 0.982 122.0 27.5 -58.2 -52.6 14.9 4.6 -1.0 8 8 A L H > S+ 0 0 43 2,-0.2 4,-5.0 1,-0.2 5,-0.3 0.917 118.7 59.9 -75.3 -37.5 16.1 1.6 1.0 9 9 A G H > S+ 0 0 26 2,-0.2 4,-4.0 1,-0.2 5,-0.3 0.966 110.4 42.6 -52.7 -48.8 16.9 -0.3 -2.2 10 10 A L H X S+ 0 0 104 -4,-4.2 4,-3.3 2,-0.2 5,-0.4 0.989 115.3 48.3 -60.1 -56.8 19.3 2.6 -3.0 11 11 A V H X S+ 0 0 81 -4,-2.6 4,-5.1 -5,-0.3 5,-0.4 0.948 116.2 45.1 -48.9 -50.1 20.6 2.7 0.6 12 12 A L H X S+ 0 0 97 -4,-5.0 4,-3.1 1,-0.2 -2,-0.2 0.976 115.3 45.4 -57.8 -56.6 21.0 -1.1 0.4 13 13 A A H < S+ 0 0 64 -4,-4.0 -1,-0.2 -5,-0.3 -2,-0.2 0.812 123.4 38.8 -59.3 -26.9 22.6 -1.0 -3.1 14 14 A V H >< S+ 0 0 63 -4,-3.3 3,-2.3 -5,-0.3 5,-0.4 0.909 114.9 48.9 -89.7 -50.4 24.8 1.9 -1.7 15 15 A L H >X S+ 0 0 55 -4,-5.1 4,-3.8 -5,-0.4 3,-2.7 0.945 100.3 67.1 -56.0 -43.1 25.4 0.6 1.8 16 16 A L T 3< S+ 0 0 117 -4,-3.1 -1,-0.3 -5,-0.4 -2,-0.2 0.788 120.4 22.9 -47.9 -22.2 26.4 -2.7 0.3 17 17 A I T <4 S+ 0 0 101 -3,-2.3 -1,-0.3 -5,-0.2 -2,-0.3 0.156 142.1 27.0-128.1 14.7 29.3 -0.6 -1.1 18 18 A C T <4 S+ 0 0 59 -3,-2.7 -3,-0.3 -4,-0.2 5,-0.2 0.434 71.9 141.3-150.6 -16.5 29.3 2.2 1.5 19 19 A W S < S- 0 0 55 -4,-3.8 -3,-0.1 -5,-0.4 -2,-0.1 0.464 70.4 -94.5 1.4-104.8 27.8 0.7 4.8 20 20 A F S > S+ 0 0 155 -5,-0.1 4,-0.5 0, 0.0 -1,-0.1 0.347 107.5 35.7-156.7 -52.0 30.1 2.5 7.4 21 21 A P H > S+ 0 0 82 0, 0.0 4,-1.4 0, 0.0 5,-0.1 0.747 106.3 63.8 -87.7 -30.4 33.1 0.5 8.5 22 22 A V H > S+ 0 0 59 2,-0.2 4,-5.2 1,-0.2 5,-0.2 0.703 91.7 68.1 -73.4 -14.6 34.1 -1.3 5.2 23 23 A L H > S+ 0 0 82 -5,-0.2 4,-3.3 2,-0.2 5,-0.2 0.993 101.6 43.6 -68.4 -55.3 34.8 2.1 3.5 24 24 A A H < S+ 0 0 66 -4,-0.5 5,-0.2 2,-0.2 -2,-0.2 0.931 123.2 41.3 -54.1 -39.5 37.9 2.8 5.7 25 25 A L H >X>S+ 0 0 95 -4,-1.4 4,-5.0 1,-0.2 3,-4.3 0.984 110.0 56.0 -70.5 -56.1 38.8 -0.8 5.1 26 26 A M H 3<>S+ 0 0 61 -4,-5.2 5,-1.7 1,-0.3 6,-0.3 0.894 101.0 59.5 -42.0 -46.4 37.7 -0.8 1.4 27 27 A A T 3<5S+ 0 0 71 -4,-3.3 -1,-0.3 -5,-0.2 -2,-0.2 0.625 131.1 10.1 -61.3 -8.8 40.2 2.1 0.9 28 28 A H T <45S+ 0 0 156 -3,-4.3 -2,-0.2 -5,-0.2 -3,-0.2 0.535 130.9 50.3-136.2 -44.9 42.9 -0.4 2.1 29 29 A S T <5S+ 0 0 82 -4,-5.0 -3,-0.3 -5,-0.2 -2,-0.1 0.960 124.3 32.4 -66.7 -48.1 41.3 -3.9 2.3 30 30 A L T