==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JUL-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 07-MAY-09 2KIR . COMPND 2 MOLECULE: DESIGNER TOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: SYNTHETIC; . AUTHOR M.BIANCALANA,A.KOIDE,Z.TAKACS,S.GOLDSTEIN,S.KOIDE . 34 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3292.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 17.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A I 0 0 166 0, 0.0 2,-0.9 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 140.2 2.1 -0.0 -1.2 2 2 A N + 0 0 178 27,-0.1 2,-0.4 0, 0.0 27,-0.1 -0.573 360.0 165.0 -72.5 105.6 5.5 -1.7 -1.8 3 3 A V - 0 0 42 -2,-0.9 27,-0.1 25,-0.1 0, 0.0 -0.957 37.2-106.4-126.7 144.3 8.0 1.0 -1.1 4 4 A K - 0 0 168 -2,-0.4 26,-0.9 25,-0.2 2,-0.4 0.088 36.9-115.2 -55.1 175.3 11.8 0.8 -0.6 5 5 A a + 0 0 39 24,-0.2 2,-0.3 20,-0.1 25,-0.1 -0.925 44.3 137.7-121.6 145.7 13.3 1.4 2.9 6 6 A S - 0 0 47 -2,-0.4 20,-0.1 23,-0.1 5,-0.0 -0.965 52.7 -66.8-174.5 162.2 15.6 4.1 4.2 7 7 A L > - 0 0 108 -2,-0.3 3,-1.0 1,-0.1 17,-0.1 -0.066 46.9-113.0 -55.4 159.4 16.3 6.5 7.1 8 8 A P G > S+ 0 0 41 0, 0.0 3,-0.7 0, 0.0 -1,-0.1 0.658 114.2 66.9 -69.8 -15.9 13.8 9.3 7.8 9 9 A Q G 3 S+ 0 0 136 1,-0.2 3,-0.2 2,-0.1 -2,-0.1 0.764 110.8 32.9 -76.0 -26.2 16.4 11.8 6.8 10 10 A Q G < S+ 0 0 145 -3,-1.0 -1,-0.2 1,-0.1 3,-0.1 -0.028 99.2 84.7-118.5 28.0 16.2 10.6 3.2 11 11 A b <> + 0 0 4 -3,-0.7 4,-0.5 10,-0.2 -1,-0.1 0.094 54.8 103.2-114.9 19.7 12.6 9.7 3.1 12 12 A I T 4 S+ 0 0 73 -3,-0.2 3,-0.2 2,-0.2 7,-0.2 0.863 76.0 58.2 -69.5 -36.8 11.3 13.2 2.3 13 13 A K T >4 S+ 0 0 176 1,-0.2 3,-1.4 2,-0.2 4,-0.4 0.974 112.1 37.6 -56.4 -59.8 10.6 12.2 -1.3 14 14 A P T 34 S+ 0 0 66 0, 0.0 -1,-0.2 0, 0.0 -2,-0.2 0.576 123.3 47.1 -69.7 -9.0 8.2 9.4 -0.5 15 15 A c T 3<>S+ 0 0 2 -4,-0.5 5,-0.9 -3,-0.2 4,-0.3 -0.104 83.4 97.6-123.5 33.5 6.9 11.5 2.4 16 16 A K T X 5S+ 0 0 140 -3,-1.4 3,-0.9 2,-0.2 -3,-0.1 0.906 80.9 49.7 -86.1 -49.1 6.4 14.8 0.5 17 17 A D T 3 5S+ 0 0 164 -4,-0.4 -1,-0.1 1,-0.3 -2,-0.1 0.851 109.5 54.4 -58.5 -35.6 2.7 14.6 -0.3 18 18 A A T 3 5S- 0 0 62 -4,-0.1 -1,-0.3 1,-0.1 -2,-0.2 0.745 104.1-135.1 -70.7 -23.7 2.1 13.7 3.4 19 19 A G T < 5 + 0 0 64 -3,-0.9 -3,-0.2 -4,-0.3 2,-0.1 0.707 57.4 137.3 75.4 19.7 3.9 16.9 4.4 20 20 A M < - 0 0 78 -5,-0.9 -1,-0.2 1,-0.1 14,-0.2 -0.398 41.2-166.4 -92.7 172.5 5.8 15.0 7.1 21 21 A R + 0 0 190 12,-1.1 -10,-0.2 -2,-0.1 13,-0.2 0.649 66.5 59.3-124.0 -49.6 9.5 15.1 8.0 22 22 A F E +A 33 0A 122 11,-1.3 11,-1.8 10,-0.1 2,-0.3 -0.045 62.0 172.2 -74.9-177.5 10.3 12.2 10.3 23 23 A G E -A 32 0A 7 9,-0.3 2,-0.3 11,-0.1 9,-0.2 -0.983 26.0-126.6-177.0 175.5 9.9 8.5 9.4 24 24 A K E -A 31 0A 125 7,-1.9 7,-3.1 -2,-0.3 2,-0.6 -0.955 13.3-147.4-147.2 123.9 10.5 4.9 10.3 25 25 A a E +A 30 0A 65 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.805 41.3 128.0 -94.6 122.7 12.1 2.1 8.2 26 26 A M E > +A 29 0A 105 3,-3.0 3,-1.6 -2,-0.6 -2,-0.1 -0.961 56.3 23.6-168.7 152.3 10.7 -1.4 8.8 27 27 A N T 3 S- 0 0 143 -2,-0.3 3,-0.1 1,-0.3 -1,-0.0 0.866 127.5 -63.7 54.8 38.3 9.4 -4.4 6.9 28 28 A K T 3 S+ 0 0 181 1,-0.2 2,-0.3 -26,-0.1 -1,-0.3 0.795 120.4 103.3 57.3 28.7 11.3 -3.2 3.8 29 29 A K E < -A 26 0A 83 -3,-1.6 -3,-3.0 -27,-0.1 2,-0.5 -0.994 66.6-134.6-142.1 147.3 9.1 -0.1 3.9 30 30 A b E -A 25 0A 10 -26,-0.9 2,-0.3 -2,-0.3 -5,-0.2 -0.900 19.5-156.1-106.7 122.9 9.5 3.5 4.9 31 31 A R E -A 24 0A 112 -7,-3.1 -7,-1.9 -2,-0.5 2,-0.5 -0.729 14.4-126.8 -98.0 145.9 6.7 5.1 7.0 32 32 A c E -A 23 0A 44 -2,-0.3 2,-0.4 -9,-0.2 -9,-0.3 -0.786 28.4-177.3 -94.8 129.8 6.1 8.8 7.2 33 33 A Y E A 22 0A 99 -11,-1.8 -11,-1.3 -2,-0.5 -12,-1.1 -0.973 360.0 360.0-129.1 142.0 5.9 10.5 10.6 34 34 A S 0 0 107 -2,-0.4 -14,-0.1 -14,-0.2 -11,-0.1 -0.120 360.0 360.0 -52.5 360.0 5.2 14.1 11.6