==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=15-MAR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 13-MAY-09 2KIZ . COMPND 2 MOLECULE: E3 UBIQUITIN-PROTEIN LIGASE ARKADIA; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.G.KANDIAS,C.T.CHASAPIS,D.BENTROP,V.EPISKOPOU,G.A.SPYROULIA . 69 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5707.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 40.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 11.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 13.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 147 0, 0.0 2,-0.2 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 32.1 2.3 -14.8 2.1 2 2 A K + 0 0 116 1,-0.4 2,-0.2 12,-0.1 12,-0.2 -0.201 360.0 177.4 -95.3-119.7 0.7 -16.3 4.6 3 3 A Q - 0 0 86 3,-0.3 -1,-0.4 -2,-0.2 3,-0.2 0.479 35.3-170.0 -34.8 164.5 -1.4 -16.3 7.0 4 4 A D - 0 0 98 2,-0.9 2,-1.7 1,-0.3 3,-0.1 -0.332 63.9 -86.0-129.4 38.9 -0.6 -20.0 7.6 5 5 A G S > S+ 0 0 59 1,-0.1 3,-2.0 0, 0.0 -1,-0.3 -0.824 110.7 117.1 64.5 -88.1 -3.4 -20.3 9.9 6 6 A E T 3 S- 0 0 160 -2,-1.7 -2,-0.9 1,-0.3 -3,-0.3 -0.051 94.4 -45.9 -43.1 109.2 -0.6 -19.1 12.2 7 7 A E T 3 - 0 0 143 -4,-0.2 -1,-0.3 -5,-0.1 3,-0.1 -0.470 64.9-173.3-141.4 66.0 -1.8 -16.5 13.0 8 8 A G < + 0 0 36 -3,-2.0 2,-0.1 1,-0.2 -4,-0.1 -0.220 44.4 95.6 37.8-116.0 -3.5 -13.9 10.7 9 9 A T + 0 0 124 -6,-0.1 -1,-0.2 1,-0.0 4,-0.1 -0.925 60.4 11.3-147.1 0.8 -4.3 -11.2 11.9 10 10 A E S > S+ 0 0 130 1,-0.6 3,-0.6 -2,-0.1 2,-0.1 0.171 92.6 21.3-145.5-120.5 -3.1 -7.6 12.4 11 11 A E T 3 S+ 0 0 75 1,-0.2 -1,-0.6 26,-0.1 26,-0.1 -0.435 116.8 32.5 -67.2 151.5 -0.3 -5.5 11.0 12 12 A D T 3 + 0 0 54 24,-2.1 2,-0.4 1,-0.3 -1,-0.2 0.905 68.1 153.1 49.4 54.9 1.0 -6.9 7.7 13 13 A T < - 0 0 68 -3,-0.6 25,-2.0 23,-0.5 -1,-0.3 -0.839 28.0-164.8 -74.1 147.0 -2.0 -8.3 6.2 14 14 A E + 0 0 52 -2,-0.4 2,-0.2 -12,-0.2 25,-0.1 -0.826 17.8 162.8-117.8 165.5 -1.3 -8.1 2.5 15 15 A E - 0 0 112 23,-0.4 9,-0.3 -2,-0.3 3,-0.1 -0.794 56.1 -40.5-148.1-161.9 -3.7 -8.5 -0.4 16 16 A K S S- 0 0 115 -2,-0.2 7,-0.3 7,-0.2 2,-0.2 -0.393 74.0 -97.3 -53.8 146.9 -3.6 -7.5 -4.0 17 17 A C B > -A 22 0A 1 5,-1.5 5,-1.7 1,-0.2 -1,-0.1 -0.522 38.9-168.6 -63.6 139.8 -1.9 -4.2 -4.5 18 18 A T T 5S+ 0 0 61 3,-0.2 3,-0.4 -2,-0.2 -1,-0.2 0.703 81.9 55.4-112.6 -25.3 -4.8 -1.8 -4.8 19 19 A I T 5S+ 0 0 41 1,-0.2 -2,-0.1 3,-0.1 -1,-0.0 0.902 116.6 39.3 -70.3 -39.9 -2.9 1.3 -6.1 20 20 A a T 5S- 0 0 50 2,-0.2 -1,-0.2 20,-0.0 -2,-0.2 0.389 104.1-136.6 -83.5 2.3 -1.6 -0.9 -8.9 21 21 A L T 5S+ 0 0 149 -3,-0.4 2,-0.3 1,-0.2 -3,-0.2 0.882 74.4 94.5 34.2 51.4 -5.1 -2.5 -9.2 22 22 A S B - 0 0 3 4,-1.8 3,-2.1 -2,-0.4 -2,-0.0 -0.735 36.4-117.2 -72.1 136.5 1.5 2.0 5.6 34 34 A P T 3 S+ 0 0 101 0, 0.0 -1,-0.1 0, 0.0 4,-0.1 0.424 106.4 86.8 -66.6 5.7 1.6 2.0 9.4 35 35 A b T 3 S- 0 0 37 2,-0.2 3,-0.1 24,-0.1 25,-0.0 0.940 117.2 -97.4 -48.7 -56.9 -2.2 1.9 9.3 36 36 A M S < S+ 0 0 77 -3,-2.1 -24,-2.1 1,-0.4 -23,-0.5 -0.142 89.4 105.2 164.3 -51.3 -1.8 -1.9 9.0 37 37 A H - 0 0 32 -25,-0.2 -4,-1.8 -26,-0.1 -1,-0.4 -0.355 57.5-136.9 -77.8 143.7 -2.0 -2.8 5.4 38 38 A L E +B 32 0B 23 -25,-2.0 -23,-0.4 -6,-0.3 -6,-0.3 -0.672 28.7 158.1 -95.6 148.0 0.9 -3.8 3.1 39 39 A F E -B 31 0B 0 -8,-2.3 -8,-2.0 -2,-0.3 2,-0.1 -0.821 52.4 -62.1-143.0-177.0 1.6 -2.6 -0.4 40 40 A H E > -B 30 0B 15 -2,-0.2 4,-2.3 -10,-0.2 -10,-0.2 -0.522 47.6-126.2 -61.5 150.3 4.5 -2.3 -2.8 41 41 A Q H > S+ 0 0 66 -12,-1.3 4,-1.9 1,-0.2 3,-0.2 0.978 112.0 50.3 -61.2 -55.4 7.1 0.1 -1.4 42 42 A V H > S+ 0 0 62 -13,-0.5 4,-2.0 1,-0.3 -1,-0.2 0.787 112.4 49.8 -54.7 -29.5 7.1 2.2 -4.5 43 43 A a H > S+ 0 0 8 2,-0.2 4,-2.3 1,-0.2 -1,-0.3 0.892 103.5 55.3 -79.0 -42.9 3.3 2.3 -4.3 44 44 A V H X S+ 0 0 19 -4,-2.3 4,-2.1 -3,-0.2 -2,-0.2 0.853 112.9 48.9 -57.7 -31.5 3.1 3.3 -0.6 45 45 A D H X S+ 0 0 82 -4,-1.9 4,-2.1 2,-0.2 -2,-0.2 0.996 113.4 38.9 -68.6 -70.3 5.3 6.3 -1.8 46 46 A Q H X S+ 0 0 124 -4,-2.0 4,-1.3 1,-0.2 5,-0.2 0.775 117.2 55.0 -60.6 -23.5 3.5 7.5 -4.9 47 47 A W H >X S+ 0 0 54 -4,-2.3 4,-1.1 2,-0.2 3,-0.9 0.978 104.8 50.3 -67.9 -56.9 0.2 6.8 -3.0 48 48 A L H 3< S+ 0 0 83 -4,-2.1 -2,-0.2 1,-0.3 -1,-0.2 0.834 108.3 56.1 -45.9 -40.3 1.3 9.0 -0.0 49 49 A I H 3< S+ 0 0 120 -4,-2.1 -1,-0.3 -5,-0.1 -2,-0.2 0.880 125.0 20.3 -60.3 -42.9 2.1 11.7 -2.7 50 50 A T H << S+ 0 0 100 -4,-1.3 2,-0.8 -3,-0.9 -2,-0.2 0.896 130.9 33.3 -91.8 -77.0 -1.5 11.5 -4.0 51 51 A N < - 0 0 41 -4,-1.1 -1,-0.3 -5,-0.2 -2,-0.1 -0.745 57.7-168.1 -85.0 114.1 -3.8 10.0 -1.4 52 52 A K S S+ 0 0 145 -2,-0.8 9,-0.6 -3,-0.2 2,-0.3 0.152 71.1 76.0 -82.7 25.0 -2.7 10.9 2.2 53 53 A K B S-C 60 0C 56 7,-0.2 7,-0.3 -6,-0.2 6,-0.1 -0.916 96.4 -93.2-131.4 157.3 -5.2 8.2 3.3 54 54 A C > - 0 0 0 5,-2.8 4,-0.7 -2,-0.3 -2,-0.1 -0.490 29.1-142.9 -66.7 138.9 -5.2 4.4 3.4 55 55 A P T 4 S+ 0 0 31 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.877 97.0 34.0 -69.7 -38.6 -6.8 3.1 0.2 56 56 A I T 4 S+ 0 0 71 1,-0.1 -2,-0.0 3,-0.1 -3,-0.0 0.975 128.3 31.9 -79.6 -69.2 -8.4 0.1 2.0 57 57 A b T 4 S- 0 0 45 1,-0.1 -1,-0.1 2,-0.1 3,-0.1 0.661 97.8-142.7 -75.3 -13.3 -9.2 1.4 5.5 58 58 A R < + 0 0 165 -4,-0.7 2,-0.2 1,-0.2 -1,-0.1 0.372 56.1 113.2 84.4 -0.8 -9.8 4.9 3.9 59 59 A V S S- 0 0 80 -6,-0.1 -5,-2.8 1,-0.1 2,-0.2 -0.680 78.3 -88.9-112.2 157.6 -8.4 7.1 6.7 60 60 A D B -C 53 0C 81 -7,-0.3 -7,-0.2 -2,-0.2 3,-0.1 -0.468 35.5-131.0 -65.0 125.9 -5.5 9.4 7.1 61 61 A I S S- 0 0 40 -9,-0.6 2,-0.3 -2,-0.2 -1,-0.2 0.843 77.6 -51.2 -49.7 -39.8 -2.6 7.2 8.3 62 62 A E - 0 0 122 -10,-0.3 -1,-0.2 2,-0.2 -27,-0.0 -0.914 51.0 -99.0-166.0-172.2 -2.2 9.9 10.9 63 63 A A S S+ 0 0 79 -2,-0.3 -2,-0.1 -3,-0.1 -1,-0.1 0.778 81.6 134.6 -77.4 -34.4 -1.8 13.7 11.0 64 64 A Q - 0 0 140 1,-0.1 -2,-0.2 -3,-0.1 -3,-0.0 -0.292 47.9-118.3 -59.3 136.9 1.9 13.2 11.3 65 65 A L + 0 0 125 1,-0.2 -1,-0.1 0, 0.0 -2,-0.0 -0.913 44.1 137.7 136.1 20.2 4.3 14.4 10.0 66 66 A P - 0 0 99 0, 0.0 -1,-0.2 0, 0.0 0, 0.0 0.558 33.5-153.6 -80.0-119.5 7.4 13.8 7.7 67 67 A S - 0 0 99 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.244 31.5-167.5-151.6 -80.3 8.0 16.5 5.0 68 68 A E 0 0 145 1,-0.0 0, 0.0 0, 0.0 0, 0.0 0.785 360.0 360.0-152.7 161.4 9.6 15.3 2.6 69 69 A S 0 0 178 0, 0.0 -1,-0.0 0, 0.0 0, 0.0 -0.906 360.0 360.0-148.0 360.0 11.7 14.9 -0.7