==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 28-MAY-09 2KJF . COMPND 2 MOLECULE: CARNOCYCLIN-A; . SOURCE 2 ORGANISM_SCIENTIFIC: CARNOBACTERIUM MALTAROMATICUM; . AUTHOR L.A.MARTIN-VISSCHER,X.GONG,M.DUSZYK,J.VEDERAS . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4001.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 83.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L >> 0 0 3 0, 0.0 4,-3.0 0, 0.0 5,-1.4 0.000 360.0 360.0 360.0 -53.8 2.1 0.0 -1.2 2 2 A V T 45 + 0 0 55 56,-2.6 58,-0.2 55,-0.2 57,-0.2 0.945 360.0 44.8 -62.0 -50.3 2.2 -3.8 -1.8 3 3 A A T 45S+ 0 0 89 56,-2.9 -1,-0.2 55,-0.3 57,-0.2 0.806 115.5 50.5 -64.3 -29.8 -1.5 -4.2 -1.6 4 4 A Y T 45S- 0 0 121 56,-2.1 -2,-0.2 55,-0.2 -1,-0.2 0.931 128.3 -90.7 -74.2 -48.2 -1.9 -1.2 -3.8 5 5 A G T <5S+ 0 0 59 -4,-3.0 -3,-0.2 1,-0.3 3,-0.1 0.133 82.0 127.5 159.5 -26.6 0.4 -2.3 -6.5 6 6 A I S - 0 0 54 1,-0.1 4,-1.9 4,-0.1 -1,-0.1 -0.165 24.4-133.6 -52.2 143.0 6.6 -3.7 -5.6 8 8 A Q H > S+ 0 0 143 2,-0.2 4,-1.6 1,-0.2 5,-0.2 0.896 105.0 50.4 -67.2 -41.4 7.3 -5.1 -2.2 9 9 A G H > S+ 0 0 52 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.923 117.2 38.4 -63.2 -46.0 11.0 -4.9 -2.6 10 10 A T H > S+ 0 0 60 2,-0.2 4,-3.1 1,-0.2 -1,-0.2 0.764 107.2 68.8 -75.9 -26.2 10.9 -1.2 -3.8 11 11 A A H X S+ 0 0 0 -4,-1.9 4,-3.0 2,-0.2 5,-0.2 0.964 98.0 48.0 -56.1 -57.5 8.2 -0.4 -1.2 12 12 A E H X S+ 0 0 131 -4,-1.6 4,-1.0 1,-0.2 -1,-0.2 0.873 115.0 47.9 -52.0 -40.2 10.5 -0.9 1.8 13 13 A K H X S+ 0 0 149 -4,-0.9 4,-0.8 2,-0.2 3,-0.5 0.930 111.5 48.4 -67.6 -46.8 13.1 1.3 0.1 14 14 A V H >X S+ 0 0 20 -4,-3.1 4,-1.2 1,-0.2 3,-0.9 0.886 104.4 60.8 -61.0 -40.3 10.5 4.0 -0.9 15 15 A V H 3X S+ 0 0 9 -4,-3.0 4,-1.2 1,-0.3 3,-0.3 0.854 96.9 60.5 -55.7 -36.5 9.2 4.1 2.7 16 16 A S H 3< S+ 0 0 86 -4,-1.0 4,-0.4 -3,-0.5 -1,-0.3 0.856 102.3 51.9 -60.5 -35.8 12.6 5.1 3.9 17 17 A L H X<>S+ 0 0 69 -3,-0.9 3,-1.0 -4,-0.8 5,-0.6 0.794 101.2 62.2 -71.4 -28.7 12.4 8.2 1.8 18 18 A I H ><5S+ 0 0 7 -4,-1.2 3,-2.5 -3,-0.3 -1,-0.2 0.857 90.6 66.4 -65.0 -35.9 9.0 9.0 3.3 19 19 A N T 3<5S+ 0 0 136 -4,-1.2 -1,-0.3 1,-0.3 -2,-0.2 0.758 86.8 71.8 -57.2 -24.3 10.6 9.4 6.7 20 20 A A T < 5S- 0 0 62 -3,-1.0 -1,-0.3 -4,-0.4 -2,-0.2 0.715 106.2-128.3 -64.9 -20.1 12.4 12.4 5.3 21 21 A G T < 5 + 0 0 46 -3,-2.5 -2,-0.1 1,-0.3 -3,-0.1 0.455 58.0 147.4 84.9 0.3 9.1 14.2 5.4 22 22 A L < - 0 0 87 -5,-0.6 -1,-0.3 1,-0.1 -2,-0.1 -0.272 50.7-104.2 -67.6 155.5 9.5 15.2 1.8 23 23 A T >> - 0 0 104 1,-0.1 3,-1.9 -3,-0.1 4,-0.8 -0.285 35.8 -97.0 -76.8 165.3 6.4 15.5 -0.4 24 24 A V H >> S+ 0 0 41 1,-0.3 4,-1.9 2,-0.2 3,-0.7 0.801 119.7 73.4 -51.5 -30.2 5.4 13.0 -3.1 25 25 A G H 3> S+ 0 0 42 1,-0.3 4,-1.4 2,-0.2 -1,-0.3 0.870 94.7 49.6 -53.0 -40.0 7.1 15.2 -5.6 26 26 A S H <> S+ 0 0 23 -3,-1.9 4,-1.1 2,-0.2 -1,-0.3 0.780 105.9 59.4 -70.8 -27.1 10.5 14.1 -4.2 27 27 A I H XX S+ 0 0 3 -4,-0.8 4,-1.4 -3,-0.7 3,-0.8 0.968 106.6 43.1 -65.5 -55.0 9.4 10.5 -4.5 28 28 A I H 3X S+ 0 0 34 -4,-1.9 4,-2.0 1,-0.2 5,-0.5 0.833 104.8 67.3 -60.5 -33.1 8.7 10.5 -8.3 29 29 A S H 3< S+ 0 0 98 -4,-1.4 -1,-0.2 -5,-0.3 -2,-0.2 0.874 104.8 42.5 -55.5 -39.4 11.9 12.5 -8.7 30 30 A I H << S+ 0 0 110 -4,-1.1 -1,-0.2 -3,-0.8 -2,-0.2 0.819 106.8 62.1 -77.0 -32.4 13.9 9.4 -7.6 31 31 A L H < S- 0 0 75 -4,-1.4 -2,-0.2 -5,-0.1 -1,-0.2 0.887 88.5-154.8 -60.6 -40.3 11.7 7.1 -9.7 32 32 A G < + 0 0 65 -4,-2.0 2,-0.3 1,-0.2 -3,-0.1 0.976 55.6 69.5 62.4 58.0 12.8 8.8 -12.9 33 33 A G S S- 0 0 47 -5,-0.5 2,-2.5 0, 0.0 -1,-0.2 -0.983 101.5 -59.4-179.8 179.0 9.7 7.9 -15.0 34 34 A V S S+ 0 0 144 -2,-0.3 -6,-0.0 1,-0.2 0, 0.0 -0.345 70.6 138.1 -77.2 60.4 6.0 8.4 -15.7 35 35 A T > + 0 0 44 -2,-2.5 3,-1.2 -7,-0.1 2,-0.7 0.342 20.8 139.3 -86.8 6.6 5.1 7.2 -12.2 36 36 A V T 3 + 0 0 113 1,-0.2 -2,-0.1 -3,-0.2 0, 0.0 -0.345 54.7 55.7 -56.1 99.9 2.5 10.0 -12.0 37 37 A G T > S+ 0 0 45 -2,-0.7 3,-1.8 0, 0.0 4,-0.2 -0.038 82.9 69.1 171.1 -52.9 -0.4 8.2 -10.3 38 38 A L T X> S+ 0 0 21 -3,-1.2 4,-2.8 1,-0.3 3,-2.0 0.696 81.8 84.5 -63.3 -18.0 0.6 6.6 -7.1 39 39 A S H 3> S+ 0 0 25 -4,-0.4 4,-1.2 1,-0.3 -1,-0.3 0.767 80.5 63.9 -55.8 -25.4 0.9 10.1 -5.7 40 40 A G H <4 S+ 0 0 65 -3,-1.8 4,-0.3 1,-0.2 -1,-0.3 0.772 114.9 28.8 -70.7 -25.9 -2.9 9.9 -5.1 41 41 A V H <> S+ 0 0 47 -3,-2.0 4,-1.8 -4,-0.2 -2,-0.2 0.652 108.6 70.7-105.2 -24.1 -2.4 7.1 -2.6 42 42 A F H X S+ 0 0 10 -4,-2.8 4,-1.5 1,-0.2 -3,-0.2 0.869 95.7 55.6 -61.0 -37.7 1.1 8.0 -1.4 43 43 A T H X S+ 0 0 94 -4,-1.2 4,-1.0 1,-0.2 -1,-0.2 0.919 108.3 46.5 -61.7 -45.4 -0.4 11.1 0.4 44 44 A A H > S+ 0 0 69 -4,-0.3 4,-1.2 1,-0.2 -1,-0.2 0.834 106.9 59.5 -66.4 -33.2 -2.9 9.0 2.4 45 45 A V H X S+ 0 0 6 -4,-1.8 4,-1.4 1,-0.2 -1,-0.2 0.864 95.0 64.2 -63.5 -36.9 -0.1 6.5 3.2 46 46 A K H >X S+ 0 0 92 -4,-1.5 4,-1.0 1,-0.3 3,-0.7 0.933 104.1 44.9 -52.1 -51.8 1.9 9.3 5.0 47 47 A A H 3X S+ 0 0 60 -4,-1.0 4,-1.8 1,-0.2 -1,-0.3 0.812 103.3 67.3 -63.4 -30.5 -0.8 9.7 7.6 48 48 A A H 3X>S+ 0 0 26 -4,-1.2 4,-2.4 1,-0.2 5,-0.7 0.882 95.1 56.7 -57.4 -40.4 -1.0 5.9 7.9 49 49 A I H <<5S+ 0 0 35 -4,-1.4 3,-0.3 -3,-0.7 -1,-0.2 0.960 111.2 40.1 -56.4 -56.0 2.5 5.9 9.4 50 50 A A H <5S+ 0 0 99 -4,-1.0 -1,-0.2 1,-0.2 -2,-0.2 0.757 115.1 55.6 -65.6 -24.4 1.6 8.3 12.2 51 51 A K H <5S- 0 0 171 -4,-1.8 -1,-0.2 -5,-0.2 -2,-0.2 0.829 140.5 -21.2 -76.9 -33.6 -1.7 6.4 12.6 52 52 A Q T <5S- 0 0 137 -4,-2.4 2,-0.3 -3,-0.3 -3,-0.2 0.423 106.5 -62.6-137.5 -72.9 -0.1 3.1 13.1 53 53 A G >>< - 0 0 16 -5,-0.7 4,-1.2 1,-0.1 3,-1.0 -0.894 36.5 -99.3 176.3 153.9 3.5 2.7 11.8 54 54 A I H 3> S+ 0 0 85 1,-0.3 4,-1.0 -2,-0.3 3,-0.2 0.839 118.2 64.6 -51.8 -35.2 5.8 2.7 8.8 55 55 A K H >> S+ 0 0 158 1,-0.2 3,-0.9 2,-0.2 4,-0.9 0.909 98.6 52.1 -55.5 -45.0 5.6 -1.1 8.8 56 56 A K H <> S+ 0 0 79 -3,-1.0 4,-1.3 1,-0.3 -1,-0.2 0.862 99.4 64.4 -60.6 -36.7 1.9 -0.9 8.0 57 57 A A H 3< S+ 0 0 0 -4,-1.2 -1,-0.3 1,-0.2 -55,-0.2 0.828 93.8 63.5 -56.3 -33.0 2.6 1.4 5.1 58 58 A I H << S+ 0 0 35 -4,-1.0 -56,-2.6 -3,-0.9 -55,-0.3 0.965 101.0 47.2 -56.4 -57.3 4.5 -1.5 3.5 59 59 A Q H < 0 0 126 -4,-0.9 -56,-2.9 1,-0.2 -1,-0.2 0.803 360.0 360.0 -55.4 -29.8 1.4 -3.8 3.2 60 60 A L < 0 0 78 -4,-1.3 -56,-2.1 -58,-0.2 -1,-0.2 0.920 360.0 360.0 -65.8 360.0 -0.4 -0.7 1.7