==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-APR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 18-JUN-09 2KKD . COMPND 2 MOLECULE: RUBREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: DESULFOVIBRIO VULGARIS STR. . AUTHOR S.G.NUNES,B.F.VOLKMAN,J.J.G.MOURA,I.MOURA,A.L.MACEDO, . 52 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3547.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 42.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 17.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 11.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 223 0, 0.0 13,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 43.5 -2.2 -11.1 5.0 2 2 A K + 0 0 137 11,-0.1 11,-0.1 2,-0.0 50,-0.1 0.137 360.0 162.8-123.5 14.0 -3.5 -8.2 2.9 3 3 A K - 0 0 119 48,-0.1 49,-0.4 49,-0.1 11,-0.1 -0.128 21.5-170.6 -40.6 108.4 -0.1 -7.3 1.4 4 4 A Y - 0 0 30 9,-0.3 9,-0.5 47,-0.2 2,-0.3 -0.116 9.9-139.9 -93.3-167.1 -1.2 -5.3 -1.5 5 5 A V E -A 50 0A 48 45,-2.1 45,-1.8 7,-0.2 2,-0.2 -0.983 18.4-105.4-156.0 155.3 0.7 -3.8 -4.5 6 6 A C E -A 49 0A 8 -2,-0.3 43,-0.2 43,-0.2 6,-0.1 -0.597 16.9-146.2 -85.0 145.8 0.8 -0.7 -6.6 7 7 A T S S+ 0 0 70 41,-2.1 42,-0.1 -2,-0.2 -1,-0.1 -0.260 93.9 42.9-104.8 43.1 -0.6 -0.8 -10.1 8 8 A V S S- 0 0 87 36,-0.1 -1,-0.1 40,-0.0 41,-0.1 0.384 136.4 -3.7-148.2 -45.5 1.9 1.7 -11.5 9 9 A C S S- 0 0 64 35,-0.0 -2,-0.1 2,-0.0 0, 0.0 0.643 95.0-112.5-122.3 -50.9 5.3 0.7 -10.2 10 10 A G + 0 0 43 1,-0.1 2,-0.4 0, 0.0 -3,-0.1 0.719 41.6 169.7 108.3 85.0 4.7 -2.1 -7.8 11 11 A Y - 0 0 61 2,-0.0 -1,-0.1 0, 0.0 -7,-0.1 -0.772 27.7-142.7-128.1 86.1 5.4 -1.4 -4.1 12 12 A E - 0 0 139 -2,-0.4 -7,-0.2 -7,-0.1 2,-0.2 -0.258 22.5-145.5 -49.9 115.7 4.1 -4.2 -1.9 13 13 A Y - 0 0 0 -9,-0.5 -9,-0.3 -11,-0.1 6,-0.1 -0.566 2.6-140.7 -88.0 151.7 2.7 -2.5 1.2 14 14 A D B > +B 18 0B 54 4,-0.5 4,-3.5 -2,-0.2 3,-0.5 -0.933 19.1 177.6-117.7 107.4 2.9 -4.0 4.7 15 15 A P T 4 S+ 0 0 10 0, 0.0 13,-1.9 0, 0.0 12,-1.1 0.800 86.5 56.7 -75.0 -31.0 -0.2 -3.4 6.8 16 16 A A T 4 S+ 0 0 63 11,-0.3 13,-0.1 10,-0.3 -2,-0.0 0.540 119.3 34.5 -75.9 -7.0 1.3 -5.4 9.7 17 17 A E T 4 S- 0 0 131 -3,-0.5 2,-0.4 9,-0.3 -1,-0.1 0.780 95.8-152.6-109.5 -56.2 4.2 -2.9 9.5 18 18 A G B < -B 14 0B 5 -4,-3.5 -4,-0.5 10,-0.1 -1,-0.2 -0.958 26.9 -75.4 120.4-134.9 2.7 0.4 8.5 19 19 A D B >> -C 24 0C 3 5,-1.0 4,-2.7 -2,-0.4 5,-1.3 -0.630 27.2-174.9-174.1 108.7 4.4 3.2 6.6 20 20 A P T 45S+ 0 0 117 0, 0.0 -1,-0.1 0, 0.0 5,-0.0 0.845 80.5 77.7 -75.0 -36.1 7.0 5.7 8.0 21 21 A D T 45S+ 0 0 118 1,-0.2 -2,-0.0 2,-0.1 0, 0.0 0.863 122.5 8.6 -38.0 -48.9 7.1 7.7 4.8 22 22 A N T 45S- 0 0 72 -3,-0.2 -1,-0.2 2,-0.0 14,-0.0 0.803 122.3 -94.1-101.0 -44.8 3.9 9.2 6.0 23 23 A G T <5 + 0 0 58 -4,-2.7 2,-0.3 1,-0.1 -2,-0.1 0.544 58.8 156.9 123.3 83.7 3.7 7.8 9.5 24 24 A V B < -C 19 0C 33 -5,-1.3 -5,-1.0 -7,-0.0 -1,-0.1 -0.967 31.9-128.8-133.9 148.9 1.8 4.6 10.1 25 25 A K > - 0 0 146 -2,-0.3 3,-0.8 -7,-0.2 2,-0.1 -0.512 36.2 -90.7 -93.0 163.6 1.9 2.0 12.9 26 26 A P T 3 S+ 0 0 86 0, 0.0 -9,-0.3 0, 0.0 -10,-0.3 -0.461 108.0 37.0 -75.0 145.1 2.2 -1.7 12.4 27 27 A G T 3 S+ 0 0 63 -12,-1.1 -11,-0.3 1,-0.3 2,-0.2 0.567 88.7 133.8 90.4 12.3 -1.0 -3.8 12.2 28 28 A T < - 0 0 18 -13,-1.9 2,-0.4 -3,-0.8 -1,-0.3 -0.484 52.6-124.1 -91.7 164.2 -2.7 -1.1 10.3 29 29 A S >> - 0 0 47 -2,-0.2 3,-1.8 1,-0.1 4,-1.1 -0.903 13.9-128.2-112.9 138.8 -4.8 -1.5 7.1 30 30 A F G >4 S+ 0 0 12 -2,-0.4 3,-1.9 1,-0.3 -1,-0.1 0.905 112.8 57.4 -45.2 -53.0 -4.2 0.3 3.9 31 31 A D G 34 S+ 0 0 147 1,-0.3 -1,-0.3 -3,-0.1 15,-0.0 0.805 102.4 57.5 -49.4 -31.1 -7.8 1.5 3.8 32 32 A D G <4 S+ 0 0 117 -3,-1.8 -1,-0.3 2,-0.0 -2,-0.2 0.827 87.0 102.7 -69.2 -32.9 -7.0 3.0 7.1 33 33 A L S << S- 0 0 9 -3,-1.9 -9,-0.0 -4,-1.1 2,-0.0 -0.009 84.1 -95.7 -47.5 157.3 -4.2 5.0 5.5 34 34 A P > - 0 0 62 0, 0.0 3,-0.8 0, 0.0 12,-0.1 -0.244 22.5-119.0 -75.1 166.4 -4.9 8.7 4.8 35 35 A A T 3 S+ 0 0 92 1,-0.2 11,-0.3 10,-0.1 12,-0.1 0.807 116.3 59.2 -74.2 -31.2 -6.2 10.0 1.5 36 36 A D T 3 S+ 0 0 150 9,-0.1 2,-0.3 10,-0.1 -1,-0.2 0.417 87.3 106.6 -76.6 2.4 -3.1 12.1 1.1 37 37 A W < + 0 0 0 -3,-0.8 9,-1.1 3,-0.0 2,-0.3 -0.659 46.0 166.6 -85.3 138.0 -1.3 8.8 1.3 38 38 A V B -D 45 0D 50 -2,-0.3 6,-0.2 7,-0.2 -2,-0.0 -0.989 52.4 -69.1-151.1 151.1 0.2 7.5 -2.0 39 39 A C >> - 0 0 0 5,-1.5 2,-2.6 -2,-0.3 4,-1.0 -0.175 46.7-146.9 -43.3 103.2 2.6 4.9 -3.1 40 40 A P T 34 S+ 0 0 31 0, 0.0 -1,-0.2 0, 0.0 -19,-0.0 -0.277 88.4 57.6 -75.0 54.4 5.8 6.5 -1.7 41 41 A V T 34 S+ 0 0 94 -2,-2.6 -2,-0.1 3,-0.1 0, 0.0 0.410 125.8 1.8-145.8 -45.2 7.8 5.0 -4.6 42 42 A C T <4 S- 0 0 62 -3,-0.8 -3,-0.0 2,-0.1 -4,-0.0 0.692 94.1-113.2-116.8 -49.3 6.3 6.3 -7.8 43 43 A G < + 0 0 37 -4,-1.0 -4,-0.1 1,-0.3 3,-0.1 -0.121 58.4 149.6 138.3 -36.6 3.5 8.6 -6.6 44 44 A A - 0 0 12 -6,-0.2 -5,-1.5 1,-0.1 -1,-0.3 0.171 53.7-102.6 -25.9 142.3 0.4 6.7 -7.8 45 45 A P B > -D 38 0D 59 0, 0.0 3,-3.1 0, 0.0 -7,-0.2 -0.350 24.1-110.5 -75.0 156.9 -2.6 7.4 -5.5 46 46 A K G > S+ 0 0 38 -9,-1.1 3,-1.1 -11,-0.3 -8,-0.1 0.708 117.5 73.5 -58.0 -19.1 -3.7 4.9 -2.9 47 47 A S G 3 S+ 0 0 116 1,-0.3 -1,-0.3 -12,-0.1 -9,-0.1 0.620 88.6 61.1 -69.8 -12.7 -6.7 4.6 -5.2 48 48 A E G < S+ 0 0 82 -3,-3.1 -41,-2.1 2,-0.0 2,-0.4 -0.145 87.1 101.6-105.4 35.2 -4.4 2.7 -7.6 49 49 A F E < +A 6 0A 27 -3,-1.1 2,-0.3 -43,-0.2 -43,-0.2 -0.963 43.3 172.7-124.3 139.4 -3.7 -0.0 -5.0 50 50 A E E -A 5 0A 120 -45,-1.8 -45,-2.1 -2,-0.4 2,-0.9 -0.948 37.9-106.2-141.2 159.7 -5.1 -3.5 -4.9 51 51 A A 0 0 64 -2,-0.3 -47,-0.2 -47,-0.2 -48,-0.1 -0.790 360.0 360.0 -91.6 105.4 -4.7 -6.7 -2.9 52 52 A A 0 0 113 -2,-0.9 -1,-0.2 -49,-0.4 -48,-0.1 0.544 360.0 360.0 -83.4 360.0 -2.9 -9.2 -5.1