==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 12-DEC-01 1KLS . COMPND 2 MOLECULE: ZINC FINGER Y-CHROMOSOMAL PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.J.LACHENMANN,J.E.LADBURY,N.B.PHILLIPS,N.NARAYANA,X.QIAN, . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2763.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 46.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 26.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 243 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -57.5 -13.1 8.8 -1.4 2 2 A T - 0 0 31 12,-0.0 2,-0.4 13,-0.0 12,-0.2 -0.713 360.0-106.6-130.7-178.5 -9.8 7.2 -0.4 3 3 A Y - 0 0 107 10,-0.5 9,-1.3 -2,-0.2 2,-0.2 -0.942 32.2-160.7-115.0 134.9 -7.0 5.1 -1.9 4 4 A Q - 0 0 103 -2,-0.4 7,-0.2 7,-0.2 2,-0.1 -0.525 22.6 -98.0-108.6 175.5 -6.7 1.4 -1.0 5 5 A C - 0 0 17 -2,-0.2 -1,-0.1 5,-0.1 6,-0.0 -0.374 14.1-140.6 -89.9 172.7 -3.8 -1.0 -1.2 6 6 A Q S S+ 0 0 161 -2,-0.1 -1,-0.1 4,-0.0 3,-0.1 0.163 96.6 37.2-118.7 14.0 -3.1 -3.6 -4.0 7 7 A Y S S+ 0 0 121 3,-0.1 2,-0.0 0, 0.0 -2,-0.0 0.613 129.1 1.5-129.9 -47.9 -1.9 -6.4 -1.8 8 8 A C S S- 0 0 65 2,-0.1 -4,-0.0 0, 0.0 18,-0.0 0.337 90.5 -92.5-112.8-116.5 -3.8 -6.5 1.5 9 9 A E + 0 0 158 -3,-0.1 2,-0.5 -5,-0.1 -3,-0.0 -0.068 69.9 133.0-164.1 42.8 -6.7 -4.0 2.3 10 10 A L - 0 0 83 8,-0.0 2,-0.2 0, 0.0 -2,-0.1 -0.886 31.9-169.2-106.7 131.6 -5.1 -1.1 4.1 11 11 A R + 0 0 135 -2,-0.5 -7,-0.2 -7,-0.2 3,-0.1 -0.675 18.1 177.9-114.1 168.8 -5.9 2.5 3.1 12 12 A S - 0 0 32 -9,-1.3 -1,-0.1 -2,-0.2 3,-0.1 0.408 54.5 -91.0-129.1 -83.8 -4.5 5.9 3.9 13 13 A A S S+ 0 0 42 1,-0.3 -10,-0.5 -9,-0.1 2,-0.3 -0.020 93.2 3.1-164.9 -67.0 -6.2 8.8 2.1 14 14 A D S >> S- 0 0 72 -12,-0.2 3,-1.6 -3,-0.1 4,-1.3 -0.895 79.7 -94.6-134.4 162.3 -4.2 9.3 -1.1 15 15 A S H 3> S+ 0 0 55 -2,-0.3 4,-2.5 1,-0.3 5,-0.3 0.854 105.0 88.8 -36.7 -53.1 -1.3 7.8 -3.0 16 16 A S H 34 S+ 0 0 96 1,-0.2 -1,-0.3 2,-0.2 4,-0.1 0.587 109.1 10.5 -15.4 -50.5 1.0 10.4 -1.3 17 17 A N H X> S+ 0 0 92 -3,-1.6 3,-1.5 2,-0.1 4,-1.1 0.763 117.2 72.3-106.3 -45.4 1.6 8.1 1.7 18 18 A L H 3X S+ 0 0 9 -4,-1.3 4,-1.8 1,-0.3 -2,-0.2 0.834 87.0 68.4 -40.8 -45.1 0.2 4.8 0.6 19 19 A K H 3X S+ 0 0 110 -4,-2.5 4,-1.9 1,-0.2 -1,-0.3 0.896 99.9 49.2 -43.1 -49.7 3.2 4.3 -1.8 20 20 A T H <> S+ 0 0 72 -3,-1.5 4,-1.9 -5,-0.3 5,-0.3 0.955 103.8 58.7 -57.2 -55.9 5.5 3.9 1.2 21 21 A H H X S+ 0 0 28 -4,-1.1 4,-2.7 1,-0.2 3,-0.5 0.908 108.8 46.5 -37.7 -61.4 3.2 1.3 2.9 22 22 A I H X>S+ 0 0 21 -4,-1.8 4,-2.7 1,-0.2 5,-2.0 0.947 107.9 53.2 -47.3 -69.1 3.5 -0.9 -0.2 23 23 A K H <5S+ 0 0 99 -4,-1.9 -1,-0.2 1,-0.2 -2,-0.2 0.771 120.1 34.0 -40.4 -39.2 7.3 -0.7 -0.7 24 24 A T H <5S+ 0 0 79 -4,-1.9 -1,-0.2 -3,-0.5 -2,-0.2 0.837 125.7 34.1 -92.2 -36.5 8.0 -1.7 3.0 25 25 A K H <5S+ 0 0 151 -4,-2.7 -3,-0.2 -5,-0.3 -2,-0.2 0.609 137.9 19.4 -95.1 -13.9 5.2 -4.2 3.9 26 26 A H T <5S- 0 0 51 -4,-2.7 4,-0.3 -5,-0.4 -3,-0.2 0.615 82.3-160.7-122.0 -33.3 4.8 -5.9 0.5 27 27 A S > < - 0 0 37 -5,-2.0 3,-2.8 -6,-0.2 -4,-0.2 0.928 32.6-113.6 40.3 75.3 8.2 -4.9 -1.2 28 28 A K T 3 S- 0 0 113 1,-0.3 -4,-0.0 0, 0.0 -1,-0.0 0.373 88.8 -18.3 8.1 -87.3 7.2 -5.5 -4.9 29 29 A E T 3 0 0 176 0, 0.0 -1,-0.3 0, 0.0 -2,-0.1 -0.326 360.0 360.0-134.5 47.1 9.4 -8.5 -5.9 30 30 A K < 0 0 204 -3,-2.8 0, 0.0 -4,-0.3 0, 0.0 -0.973 360.0 360.0-123.0 360.0 12.0 -8.3 -3.1