==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 08-JUL-09 2KLV . COMPND 2 MOLECULE: CAPSID PROTEIN G8P; . SOURCE 2 ORGANISM_SCIENTIFIC: PSEUDOMONAS PHAGE PF1; . AUTHOR S.PARK,W.SON,R.MUKHOPADHYAY,H.VALAFAR,S.J.OPELLA . 45 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2897.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 88.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 26.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 60.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 144 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 67.9 -32.2 19.9 3.4 2 2 A V - 0 0 67 1,-0.1 0, 0.0 2,-0.1 0, 0.0 -0.938 360.0-169.8-118.6 138.7 -31.2 16.5 2.0 3 3 A I S S+ 0 0 95 -2,-0.4 -1,-0.1 3,-0.1 0, 0.0 0.025 85.6 13.0-113.7 28.6 -30.1 13.5 4.2 4 4 A D S > S+ 0 0 51 3,-0.0 4,-1.0 0, 0.0 3,-0.2 0.289 114.5 60.4-165.9 -45.2 -28.9 11.1 1.5 5 5 A T H >> S+ 0 0 79 1,-0.2 3,-0.8 2,-0.2 4,-0.6 0.974 112.1 47.5 -60.2 -46.9 -28.4 12.7 -2.0 6 6 A S H 3> S+ 0 0 55 1,-0.2 4,-1.7 2,-0.2 3,-0.3 0.730 95.0 75.3 -63.1 -26.0 -25.8 15.0 -0.3 7 7 A A H 3> S+ 0 0 48 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.928 88.7 58.8 -57.7 -42.6 -24.1 12.1 1.5 8 8 A V H < S+ 0 0 65 -4,-1.6 3,-1.4 1,-0.2 4,-0.2 0.969 117.0 45.2 -59.4 -48.8 -16.0 13.0 -2.4 13 13 A T H 3< S+ 0 0 75 -4,-3.9 -2,-0.2 1,-0.3 -1,-0.2 0.922 126.4 33.2 -58.7 -42.2 -15.5 16.1 -0.2 14 14 A D T 3< S+ 0 0 57 -4,-3.6 -1,-0.3 -5,-0.3 -2,-0.2 -0.324 76.5 135.4-107.8 46.9 -14.1 13.8 2.5 15 15 A G S < S- 0 0 67 -3,-1.4 -1,-0.2 1,-0.1 -2,-0.1 0.994 80.7 -81.1 -59.1 -58.5 -12.4 11.2 0.3 16 16 A Q + 0 0 72 -4,-0.2 2,-0.7 -3,-0.2 4,-0.1 0.117 52.3 177.6 154.6 81.0 -9.2 11.2 2.5 17 17 A G + 0 0 90 3,-0.1 2,-0.0 2,-0.1 -2,-0.0 -0.847 38.5 109.4-102.8 113.9 -6.4 13.8 2.2 18 18 A D S S- 0 0 69 -2,-0.7 -1,-0.0 0, 0.0 0, 0.0 -0.335 100.5 -47.1-178.0 85.7 -3.6 13.3 4.8 19 19 A M S > S+ 0 0 65 1,-0.1 4,-2.1 4,-0.0 5,-0.3 0.501 103.3 118.0 58.2 -1.5 -0.1 12.0 3.7 20 20 A K H > + 0 0 51 3,-0.2 4,-1.3 2,-0.2 -1,-0.1 0.855 69.3 52.8 -63.3 -34.1 -2.0 9.4 1.6 21 21 A A H > S+ 0 0 74 2,-0.2 4,-0.6 1,-0.1 3,-0.2 0.998 123.1 23.4 -69.9 -60.4 -0.5 10.8 -1.6 22 22 A I H >> S+ 0 0 70 1,-0.2 4,-1.1 2,-0.2 3,-0.6 0.874 121.1 60.7 -70.5 -35.5 3.2 10.8 -0.8 23 23 A G H 3X S+ 0 0 48 -4,-2.1 4,-1.6 1,-0.2 5,-0.2 0.854 93.3 64.8 -61.0 -36.0 2.8 8.1 1.8 24 24 A G H 3X S+ 0 0 53 -4,-1.3 4,-1.3 -5,-0.3 -1,-0.2 0.870 100.2 51.0 -60.7 -33.6 1.4 5.6 -0.7 25 25 A Y H X S+ 0 0 58 -4,-1.2 3,-0.7 1,-0.2 4,-0.5 0.890 97.9 62.4 -62.7 -34.8 10.7 -8.5 0.6 35 35 A V H >< S+ 0 0 59 -4,-1.0 3,-1.2 -3,-0.4 4,-0.4 0.882 95.0 59.5 -59.5 -37.1 10.7 -10.3 -2.7 36 36 A A H >X S+ 0 0 58 -4,-1.0 3,-2.0 -3,-0.5 4,-0.5 0.865 89.2 73.5 -60.5 -34.5 14.5 -10.3 -2.9 37 37 A G H XX S+ 0 0 55 -4,-0.8 3,-1.0 -3,-0.7 4,-1.0 0.826 80.3 73.0 -51.9 -31.1 14.7 -12.3 0.4 38 38 A L H XX S+ 0 0 56 -3,-1.2 3,-0.7 -4,-0.5 4,-0.6 0.866 83.5 68.3 -54.1 -35.1 13.5 -15.4 -1.5 39 39 A I H X4 S+ 0 0 65 -3,-2.0 3,-1.7 -4,-0.4 4,-0.4 0.936 96.2 53.2 -54.0 -42.6 17.0 -15.6 -3.2 40 40 A Y H X< S+ 0 0 63 -3,-1.0 3,-2.0 -4,-0.5 4,-0.5 0.869 94.2 73.5 -60.2 -31.5 18.5 -16.5 0.3 41 41 A S H XX S+ 0 0 50 -4,-1.0 3,-0.9 -3,-0.7 4,-0.7 0.742 76.2 76.9 -56.1 -21.5 15.8 -19.3 0.5 42 42 A M G X< S+ 0 0 62 -3,-1.7 3,-1.4 -4,-0.6 -1,-0.3 0.908 87.2 61.3 -57.5 -34.9 17.9 -21.2 -2.1 43 43 A L G <4 S+ 0 0 77 -3,-2.0 -1,-0.3 -4,-0.4 -2,-0.2 0.865 92.2 65.4 -60.0 -32.0 20.2 -22.0 0.9 44 44 A R G <4 0 0 74 -3,-0.9 -1,-0.3 -4,-0.5 -2,-0.2 0.787 360.0 360.0 -59.2 -28.8 17.1 -23.8 2.5 45 45 A K << 0 0 110 -3,-1.4 -3,-0.1 -4,-0.7 -2,-0.1 0.940 360.0 360.0 64.7 360.0 17.3 -26.4 -0.4