==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN 18-DEC-01 1KNE . COMPND 2 MOLECULE: HETEROCHROMATIN PROTEIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: DROSOPHILA MELANOGASTER; . AUTHOR S.A.JACOBS,S.KHORASANIZADEH . 58 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4152.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 39 67.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 22 37.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 23 A E 0 0 127 0, 0.0 2,-0.4 0, 0.0 56,-0.2 0.000 360.0 360.0 360.0 -28.3 -5.2 25.1 7.6 2 24 A Y E -A 56 0A 79 54,-1.9 54,-1.8 0, 0.0 2,-0.2 -0.985 360.0-112.8-127.4 136.5 -3.2 27.9 9.3 3 25 A A E -A 55 0A 35 -2,-0.4 21,-1.1 52,-0.2 2,-0.5 -0.415 30.5-141.0 -64.0 129.3 -2.6 31.5 8.2 4 26 A V E -C 23 0B 9 50,-3.3 19,-0.2 19,-0.2 3,-0.1 -0.810 15.3-170.3 -95.6 129.0 1.1 32.2 7.3 5 27 A E E - 0 0 89 17,-2.5 2,-0.3 -2,-0.5 18,-0.2 0.919 63.2 -33.8 -82.0 -47.5 2.6 35.5 8.2 6 28 A K E -C 22 0B 89 16,-1.3 16,-2.2 48,-0.0 2,-0.6 -0.978 52.5-103.7-170.2 159.3 5.9 35.2 6.3 7 29 A I E -C 21 0B 16 -2,-0.3 14,-0.2 14,-0.2 3,-0.1 -0.845 29.3-179.7 -93.6 117.9 8.7 33.0 5.0 8 30 A I E - 0 0 55 12,-2.9 2,-0.3 -2,-0.6 13,-0.2 0.758 61.0 -14.8 -87.6 -29.4 11.8 33.3 7.1 9 31 A D E -C 20 0B 73 11,-1.0 11,-2.7 2,-0.0 2,-0.3 -0.981 55.3-133.9-166.3 170.0 14.1 31.0 5.3 10 32 A R E +C 19 0B 71 -2,-0.3 2,-0.3 9,-0.2 9,-0.2 -0.981 21.9 162.4-139.1 148.3 14.5 28.2 2.8 11 33 A R E -C 18 0B 70 7,-2.2 7,-3.4 -2,-0.3 2,-0.6 -0.984 33.9-119.4-157.5 164.9 16.3 24.8 2.5 12 34 A V E +C 17 0B 87 -2,-0.3 2,-0.4 5,-0.2 5,-0.2 -0.959 33.1 171.3-112.4 118.0 16.5 21.5 0.7 13 35 A R E > -C 16 0B 122 3,-3.1 3,-1.7 -2,-0.6 -2,-0.1 -0.994 69.9 -8.2-128.9 126.5 16.0 18.4 2.8 14 36 A K T 3 S- 0 0 195 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.938 127.1 -58.7 55.2 48.0 15.7 14.9 1.4 15 37 A G T 3 S+ 0 0 82 1,-0.2 2,-0.4 -3,-0.1 -1,-0.3 0.536 118.4 117.7 58.9 6.6 15.5 16.3 -2.1 16 38 A M E < -C 13 0B 58 -3,-1.7 -3,-3.1 20,-0.0 2,-0.3 -0.900 66.7-127.6-109.9 129.0 12.5 18.3 -0.9 17 39 A V E -C 12 0B 23 -2,-0.4 19,-2.8 -5,-0.2 2,-0.4 -0.588 30.6-169.4 -75.3 132.7 12.3 22.0 -0.7 18 40 A E E -CD 11 35B 31 -7,-3.4 -7,-2.2 -2,-0.3 2,-0.5 -0.964 13.8-150.4-127.7 145.6 11.3 23.4 2.7 19 41 A Y E -CD 10 34B 8 15,-3.5 15,-2.5 -2,-0.4 2,-1.0 -0.942 10.9-143.7-116.2 127.8 10.2 26.8 4.0 20 42 A Y E +CD 9 33B 68 -11,-2.7 -12,-2.9 -2,-0.5 -11,-1.0 -0.784 38.6 176.7 -85.5 103.9 10.8 28.0 7.5 21 43 A L E -CD 7 32B 0 11,-2.0 11,-1.5 -2,-1.0 2,-0.4 -0.751 31.0-138.4-117.6 161.1 7.7 30.0 8.3 22 44 A K E -C 6 0B 22 -16,-2.2 -17,-2.5 -2,-0.3 -16,-1.3 -0.935 21.4-136.9-111.8 135.9 6.1 32.0 11.0 23 45 A W E > -C 4 0B 0 -2,-0.4 3,-1.7 4,-0.3 -19,-0.2 -0.749 23.4-113.3 -92.9 133.9 2.4 31.7 11.6 24 46 A K T 3 S+ 0 0 126 -21,-1.1 -21,-0.1 -2,-0.4 -1,-0.1 -0.398 101.9 20.9 -63.3 140.2 0.3 34.8 12.3 25 47 A G T 3 S+ 0 0 83 1,-0.2 -1,-0.2 -2,-0.1 -2,-0.0 0.326 108.3 96.8 85.7 -8.7 -1.0 35.0 15.8 26 48 A Y S < S- 0 0 88 -3,-1.7 -1,-0.2 1,-0.1 5,-0.0 -0.844 78.5-103.1-114.4 153.7 1.6 32.5 17.1 27 49 A P > - 0 0 78 0, 0.0 3,-2.6 0, 0.0 -4,-0.3 -0.284 32.3-110.2 -71.5 157.8 4.9 33.1 18.8 28 50 A E G > S+ 0 0 118 1,-0.3 3,-2.4 2,-0.2 -5,-0.0 0.806 116.5 70.4 -53.9 -31.3 8.2 32.8 17.0 29 51 A T G 3 S+ 0 0 124 1,-0.3 -1,-0.3 -7,-0.0 -7,-0.0 0.653 92.5 59.7 -60.5 -16.3 8.8 29.6 19.1 30 52 A E G < S+ 0 0 83 -3,-2.6 -1,-0.3 -7,-0.1 -2,-0.2 0.425 75.1 127.1 -91.3 -3.0 6.1 28.0 17.0 31 53 A N < - 0 0 14 -3,-2.4 2,-0.3 -4,-0.2 -9,-0.2 -0.259 39.3-174.4 -54.9 139.7 7.9 28.6 13.7 32 54 A T E -D 21 0B 38 -11,-1.5 -11,-2.0 -13,-0.1 2,-0.5 -0.984 29.6-114.1-141.4 153.3 8.2 25.4 11.8 33 55 A W E -D 20 0B 65 -2,-0.3 -13,-0.2 -13,-0.2 26,-0.2 -0.751 37.0-175.9 -82.6 125.5 9.8 24.0 8.6 34 56 A E E -D 19 0B 1 -15,-2.5 -15,-3.5 -2,-0.5 5,-0.1 -0.981 27.8-115.8-125.4 137.3 7.2 23.0 6.1 35 57 A P E > -D 18 0B 21 0, 0.0 3,-2.7 0, 0.0 4,-0.4 -0.407 35.2-110.8 -65.9 147.5 7.8 21.3 2.7 36 58 A E G > S+ 0 0 89 -19,-2.8 3,-1.7 1,-0.3 -18,-0.1 0.789 116.0 66.1 -49.4 -34.4 6.7 23.5 -0.2 37 59 A N G 3 S+ 0 0 110 -20,-0.3 -1,-0.3 1,-0.3 -19,-0.1 0.634 94.8 59.9 -63.0 -16.8 3.8 21.2 -1.0 38 60 A N G < S+ 0 0 28 -3,-2.7 19,-2.8 19,-0.1 2,-0.3 0.593 90.8 90.6 -86.0 -13.2 2.3 22.2 2.4 39 61 A L E < -B 56 0A 22 -3,-1.7 17,-0.2 -4,-0.4 2,-0.1 -0.629 46.5-176.8 -92.2 145.4 2.0 25.9 1.4 40 62 A D E +B 55 0A 110 15,-2.9 15,-1.8 -2,-0.3 -36,-0.1 -0.619 59.0 94.8-130.2 64.4 -0.8 27.7 -0.2 41 63 A C > + 0 0 5 13,-0.2 4,-2.1 -2,-0.1 3,-0.4 -0.364 34.1 166.2-155.2 68.8 0.8 31.2 -0.6 42 64 A Q H > S+ 0 0 112 1,-0.2 4,-3.6 2,-0.2 5,-0.3 0.763 77.2 63.1 -58.0 -29.7 2.4 31.7 -4.0 43 65 A D H > S+ 0 0 139 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.947 107.2 40.5 -61.1 -52.0 2.6 35.5 -3.3 44 66 A L H > S+ 0 0 49 -3,-0.4 4,-2.5 2,-0.2 -2,-0.2 0.912 119.4 47.5 -63.7 -42.0 4.9 35.1 -0.3 45 67 A I H X S+ 0 0 16 -4,-2.1 4,-3.0 2,-0.2 5,-0.2 0.970 113.5 45.1 -62.6 -56.6 6.9 32.4 -2.1 46 68 A Q H < S+ 0 0 136 -4,-3.6 4,-0.5 1,-0.2 -1,-0.2 0.878 115.9 49.8 -54.3 -38.5 7.2 34.3 -5.3 47 69 A Q H >X S+ 0 0 124 -4,-2.4 4,-0.8 -5,-0.3 3,-0.5 0.864 111.4 47.5 -68.4 -37.7 8.1 37.3 -3.2 48 70 A Y H >< S+ 0 0 51 -4,-2.5 3,-0.8 1,-0.2 -2,-0.2 0.908 107.0 55.7 -69.9 -42.0 10.7 35.4 -1.3 49 71 A E T 3< S+ 0 0 63 -4,-3.0 -1,-0.2 1,-0.2 -2,-0.2 0.583 109.2 49.9 -65.5 -11.3 12.3 33.9 -4.3 50 72 A A T <4 S+ 0 0 73 -3,-0.5 -1,-0.2 -4,-0.5 -2,-0.2 0.632 92.4 73.0 -99.3 -20.4 12.8 37.5 -5.7 51 73 A S << 0 0 93 -3,-0.8 -2,-0.1 -4,-0.8 -1,-0.1 0.375 360.0 360.0 -75.5 3.5 14.4 38.9 -2.5 52 74 A R 0 0 175 -3,-0.2 -1,-0.2 -4,-0.2 -4,-0.0 -0.507 360.0 360.0 -99.1 360.0 17.6 37.0 -3.3 53 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 54 5 P Q 0 0 146 0, 0.0 -50,-3.3 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0-115.0 -1.9 33.2 2.7 55 6 P T E -AB 3 40A 38 -15,-1.8 -15,-2.9 -52,-0.3 2,-0.3 -0.725 360.0-173.0-126.5 175.2 -2.1 29.7 4.4 56 7 P A E -AB 2 39A 1 -54,-1.8 -54,-1.9 -17,-0.2 2,-0.2 -0.971 30.3-104.6-166.0 149.4 -0.3 26.4 5.0 57 8 P R - 0 0 154 -19,-2.8 2,-0.6 -2,-0.3 -19,-0.1 -0.562 33.2-142.9 -73.9 135.7 -0.6 22.9 6.4 58 9 P X 0 0 51 -2,-0.2 -24,-0.1 -24,-0.1 -1,-0.0 -0.922 360.0 360.0-106.7 119.2 1.1 22.4 9.8 59 10 P S 0 0 119 -2,-0.6 -25,-0.0 -26,-0.2 -1,-0.0 -0.070 360.0 360.0 -86.7 360.0 2.8 19.0 10.3