==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-MAR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 27-AUG-09 2KNM . COMPND 2 MOLECULE: CYCLOVIOLACIN-O2; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA ODORATA; . AUTHOR K.ROSENGREN . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2231.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 63.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 30.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 65 0, 0.0 29,-0.3 0, 0.0 27,-0.0 0.000 360.0 360.0 360.0 24.3 6.1 8.3 0.6 2 2 A I E -A 29 0A 95 27,-1.2 27,-2.9 0, 0.0 2,-0.2 -0.993 360.0-113.3-130.4 131.3 5.1 6.8 -2.7 3 3 A P E -A 28 0A 72 0, 0.0 25,-0.3 0, 0.0 24,-0.1 -0.428 23.0-166.4 -64.3 126.7 1.9 4.8 -3.5 4 4 A a E - 0 0 45 23,-3.2 24,-0.1 2,-0.2 3,-0.1 0.924 43.3-103.4 -81.2 -48.1 2.6 1.2 -4.3 5 5 A G E S+ 0 0 56 22,-0.7 23,-0.1 1,-0.5 8,-0.0 -0.120 83.0 98.2 157.4 -53.9 -0.7 0.2 -5.8 6 6 A E E - 0 0 36 20,-0.1 21,-2.8 1,-0.1 -1,-0.5 -0.329 60.7-137.2 -67.3 147.4 -2.9 -1.8 -3.5 7 7 A S E >> -A 26 0A 51 19,-0.2 4,-2.2 5,-0.1 2,-1.9 -0.924 9.8-136.0-110.2 127.3 -5.7 -0.1 -1.5 8 8 A b T 34 S+ 0 0 26 17,-1.7 18,-0.1 -2,-0.5 17,-0.1 -0.094 90.8 84.7 -73.6 41.6 -6.1 -1.1 2.2 9 9 A V T 34 S- 0 0 88 -2,-1.9 -1,-0.2 2,-0.2 17,-0.1 0.777 121.8 -21.3-104.9 -49.2 -9.9 -1.2 1.6 10 10 A W T <4 S+ 0 0 228 -3,-1.1 -2,-0.2 1,-0.1 -4,-0.0 0.367 124.6 76.0-139.1 -11.5 -10.2 -4.7 0.2 11 11 A I S < S- 0 0 89 -4,-2.2 -2,-0.2 2,-0.0 -1,-0.1 -0.940 70.8-136.1-116.2 125.3 -6.7 -5.5 -1.0 12 12 A P - 0 0 95 0, 0.0 2,-1.4 0, 0.0 3,-0.2 -0.467 34.0-101.6 -74.2 143.5 -3.8 -6.4 1.4 13 13 A c > + 0 0 15 1,-0.2 3,-1.4 -2,-0.1 4,-0.1 -0.502 43.2 170.7 -69.8 95.4 -0.4 -4.8 0.6 14 14 A I G > S+ 0 0 131 -2,-1.4 3,-2.1 1,-0.3 -1,-0.2 0.869 78.8 69.3 -69.2 -32.3 1.5 -7.6 -1.1 15 15 A S G > >S+ 0 0 16 1,-0.3 5,-2.2 -3,-0.2 3,-1.9 0.545 70.1 92.8 -61.8 -6.7 4.0 -4.8 -1.7 16 16 A S G X 5S+ 0 0 63 -3,-1.4 3,-2.1 1,-0.3 -1,-0.3 0.821 72.7 70.2 -58.8 -26.1 4.7 -4.9 2.0 17 17 A A G < 5S+ 0 0 98 -3,-2.1 -1,-0.3 1,-0.3 -2,-0.2 0.820 101.3 43.9 -59.3 -31.3 7.4 -7.4 1.0 18 18 A I G < 5S- 0 0 106 -3,-1.9 -1,-0.3 -4,-0.2 -2,-0.2 0.032 137.2 -84.0-103.9 27.5 9.2 -4.4 -0.5 19 19 A G T < 5S+ 0 0 49 -3,-2.1 11,-0.3 1,-0.3 -3,-0.2 0.505 80.5 148.3 87.4 5.4 8.5 -2.1 2.5 20 20 A a < + 0 0 3 -5,-2.2 2,-0.3 9,-0.1 -1,-0.3 -0.503 19.5 175.4 -75.3 141.4 5.0 -1.0 1.4 21 21 A S E -B 28 0A 44 7,-3.0 7,-3.0 -2,-0.2 -17,-0.1 -0.998 39.0 -84.3-148.5 146.4 2.6 -0.2 4.3 22 22 A b E +B 27 0A 77 -2,-0.3 2,-0.3 5,-0.3 5,-0.2 -0.266 53.7 160.3 -53.6 125.0 -0.9 1.1 4.7 23 23 A K E > -B 26 0A 100 3,-2.8 3,-1.8 -2,-0.0 -15,-0.1 -0.945 68.7 -3.6-151.7 122.9 -0.9 4.9 4.7 24 24 A S T 3 S- 0 0 111 -2,-0.3 3,-0.1 1,-0.3 -2,-0.0 0.861 129.6 -60.0 59.8 36.9 -4.0 7.1 4.0 25 25 A K T 3 S+ 0 0 124 1,-0.2 -17,-1.7 -17,-0.1 2,-0.4 0.422 125.5 92.7 71.7 0.9 -5.9 3.9 3.2 26 26 A V E < S-AB 7 23A 43 -3,-1.8 -3,-2.8 -19,-0.3 2,-0.5 -0.941 87.3-103.6-125.8 146.8 -3.4 3.1 0.4 27 27 A c E + B 0 22A 0 -21,-2.8 -23,-3.2 -2,-0.4 -22,-0.7 -0.550 48.9 179.9 -70.0 117.8 -0.3 1.0 0.5 28 28 A Y E -AB 3 21A 68 -7,-3.0 -7,-3.0 -2,-0.5 2,-0.3 -0.902 17.7-173.4-122.9 152.7 2.7 3.4 0.5 29 29 A R E A 2 0A 93 -27,-2.9 -27,-1.2 -2,-0.3 -9,-0.1 -0.974 360.0 360.0-146.2 125.5 6.4 3.0 0.5 30 30 A N 0 0 144 -2,-0.3 -10,-0.1 -11,-0.3 -1,-0.1 0.841 360.0 360.0 57.7 360.0 9.0 5.8 0.8