==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-MAR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 27-AUG-09 2KNN . COMPND 2 MOLECULE: CYCLOVIOLACIN-O2; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA ODORATA; . AUTHOR K.ROSENGREN . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2447.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 30.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 75 0, 0.0 29,-0.3 0, 0.0 27,-0.0 0.000 360.0 360.0 360.0 21.6 6.0 9.6 -1.1 2 2 A I E -A 29 0A 110 27,-2.1 27,-3.4 0, 0.0 0, 0.0 -0.999 360.0-102.4-138.6 136.6 5.2 7.8 -4.3 3 3 A P E -A 28 0A 76 0, 0.0 25,-0.3 0, 0.0 24,-0.0 -0.256 21.7-153.2 -58.4 142.9 2.5 5.2 -5.1 4 4 A a E - 0 0 52 23,-2.6 24,-0.2 2,-0.3 3,-0.1 0.908 39.4-109.8 -84.8 -46.5 3.6 1.6 -5.2 5 5 A G E S+ 0 0 71 22,-0.7 2,-0.2 1,-0.6 23,-0.1 -0.153 85.3 79.4 147.2 -46.3 1.0 0.2 -7.5 6 6 A X E - 0 0 92 1,-0.1 21,-2.4 20,-0.0 -1,-0.6 -0.583 68.5-129.6 -93.3 156.6 -1.3 -2.0 -5.5 7 7 A S E -A 26 0A 62 19,-0.3 19,-0.3 -2,-0.2 4,-0.1 -0.539 2.1-150.3 -97.5 166.4 -4.1 -1.0 -3.3 8 8 A b + 0 0 5 17,-2.1 18,-0.2 -2,-0.2 17,-0.2 -0.232 53.9 126.3-130.6 41.2 -4.8 -2.1 0.3 9 9 A V S S- 0 0 73 16,-0.4 -1,-0.1 2,-0.1 17,-0.1 0.914 95.5 -0.7 -65.8 -44.8 -8.5 -1.8 0.3 10 10 A W S S+ 0 0 235 1,-0.3 -2,-0.1 15,-0.1 -1,-0.0 0.773 136.9 40.0-110.3 -57.7 -9.0 -5.3 1.5 11 11 A I S S- 0 0 121 -4,-0.1 -1,-0.3 2,-0.0 -2,-0.1 -0.872 79.8-134.4-103.0 123.9 -5.6 -6.9 1.8 12 12 A P > - 0 0 59 0, 0.0 2,-1.4 0, 0.0 3,-0.6 -0.431 16.6-122.9 -74.2 147.5 -2.7 -4.7 3.3 13 13 A c T 3 S+ 0 0 2 1,-0.2 7,-0.7 -2,-0.1 6,-0.5 -0.307 90.5 91.0 -87.2 53.7 0.7 -4.7 1.6 14 14 A I T > S+ 0 0 109 -2,-1.4 3,-2.2 3,-0.1 -1,-0.2 0.772 73.6 57.0-109.3 -52.2 2.4 -5.8 4.8 15 15 A S T < S+ 0 0 121 -3,-0.6 -2,-0.1 1,-0.3 -1,-0.0 0.138 103.4 61.3 -71.1 23.5 2.4 -9.6 4.6 16 16 A S T 3 S- 0 0 58 -2,-0.1 -1,-0.3 0, 0.0 -2,-0.1 0.446 98.0-134.5-124.1 -12.1 4.3 -9.2 1.3 17 17 A A < + 0 0 93 -3,-2.2 -3,-0.1 1,-0.1 -2,-0.1 0.847 61.0 135.6 55.9 39.9 7.4 -7.4 2.7 18 18 A I - 0 0 78 -5,-0.4 -4,-0.1 2,-0.1 -1,-0.1 0.801 67.0-124.1 -83.3 -32.1 7.2 -4.9 -0.2 19 19 A G + 0 0 41 -6,-0.5 2,-0.3 1,-0.3 -5,-0.1 0.829 60.5 138.2 89.7 38.0 7.8 -2.0 2.2 20 20 A a - 0 0 8 -7,-0.7 2,-0.4 9,-0.1 -1,-0.3 -0.856 47.1-131.6-116.0 151.0 4.8 0.1 1.4 21 21 A S E -B 28 0A 83 7,-3.3 7,-2.4 -2,-0.3 2,-0.6 -0.843 20.3-123.6-103.1 135.7 2.5 2.0 3.7 22 22 A b E +B 27 0A 62 -2,-0.4 2,-0.3 5,-0.2 5,-0.2 -0.675 43.9 157.8 -80.5 118.6 -1.3 1.7 3.4 23 23 A K E > -B 26 0A 140 3,-3.1 3,-1.7 -2,-0.6 -15,-0.1 -0.984 66.2 -1.5-145.7 129.2 -2.8 5.1 2.9 24 24 A S T 3 S- 0 0 103 -2,-0.3 3,-0.1 1,-0.3 -15,-0.1 0.858 128.0 -64.0 57.3 36.3 -6.2 6.0 1.4 25 25 A K T 3 S+ 0 0 105 1,-0.2 -17,-2.1 -17,-0.2 -16,-0.4 0.682 122.2 97.3 58.9 25.7 -6.7 2.3 1.0 26 26 A V E < S-AB 7 23A 49 -3,-1.7 -3,-3.1 -19,-0.3 2,-0.4 -0.962 77.6-109.4-138.1 150.6 -3.7 2.3 -1.5 27 27 A c E + B 0 22A 1 -21,-2.4 -23,-2.6 -2,-0.3 -22,-0.7 -0.690 36.7 178.9 -88.8 135.4 -0.1 1.4 -1.0 28 28 A Y E -AB 3 21A 95 -7,-2.4 -7,-3.3 -2,-0.4 2,-0.3 -0.925 9.7-170.3-131.8 155.2 2.6 4.1 -1.1 29 29 A R E A 2 0A 131 -27,-3.4 -27,-2.1 -2,-0.3 -9,-0.1 -0.984 360.0 360.0-150.8 136.4 6.3 4.3 -0.7 30 30 A N 0 0 137 -2,-0.3 -1,-0.1 -29,-0.3 -10,-0.0 0.844 360.0 360.0 46.6 360.0 8.8 7.2 -0.3