==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER UNKNOWN FUNCTION 30-AUG-09 2KNP . COMPND 2 MOLECULE: MCOCC-1; . SOURCE 2 ORGANISM_SCIENTIFIC: MOMORDICA COCHINCHINENSIS; . AUTHOR N.L.DALY,L.CHAN . 33 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2381.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 57.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 27.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 84 0, 0.0 31,-0.2 0, 0.0 32,-0.1 0.000 360.0 360.0 360.0 -45.7 11.2 -2.7 -5.2 2 2 A a + 0 0 26 30,-1.0 3,-0.2 29,-0.5 30,-0.1 -0.127 360.0 136.3-130.7 36.7 7.6 -3.5 -4.3 3 3 A E + 0 0 77 1,-0.2 28,-0.3 29,-0.1 3,-0.1 -0.262 47.9 50.0 -80.4 170.0 5.9 -0.3 -5.6 4 4 A G S S+ 0 0 57 26,-1.2 2,-0.3 1,-0.3 -1,-0.2 0.881 88.6 113.3 69.3 36.7 2.7 -0.2 -7.6 5 5 A K E -A 30 0A 93 25,-1.0 25,-2.3 -3,-0.2 2,-0.5 -0.845 68.4-108.7-131.0 170.2 0.8 -2.5 -5.1 6 6 A Q E -A 29 0A 90 23,-0.3 6,-3.3 -2,-0.3 23,-0.3 -0.876 34.7-173.3-106.1 131.6 -2.0 -2.1 -2.7 7 7 A b E +A 28 0A 4 21,-2.0 21,-1.6 -2,-0.5 2,-0.6 -0.520 42.9 60.1-113.2-176.4 -1.4 -2.1 1.0 8 8 A G E > S-A 27 0A 25 1,-0.2 3,-0.6 19,-0.2 19,-0.2 -0.891 116.2 -8.0 103.6-124.2 -3.5 -2.1 4.2 9 9 A L T 3 S+ 0 0 109 17,-1.0 2,-1.2 -2,-0.6 -1,-0.2 0.966 144.4 39.2 -74.5 -53.5 -5.9 -5.1 4.6 10 10 A F T 3 S+ 0 0 100 -3,-0.4 2,-0.5 2,-0.0 -1,-0.3 -0.458 85.3 179.2 -94.7 61.1 -5.3 -6.6 1.2 11 11 A R < - 0 0 170 -2,-1.2 -4,-0.3 -3,-0.6 18,-0.1 -0.520 17.5-174.9 -69.9 116.9 -1.6 -5.9 1.1 12 12 A S + 0 0 72 -6,-3.3 2,-0.3 -2,-0.5 -1,-0.1 -0.044 64.5 69.8-100.4 28.5 -0.1 -7.2 -2.1 13 13 A c - 0 0 32 -7,-0.2 2,-0.3 -8,-0.1 4,-0.1 -0.972 55.5-179.8-143.5 155.9 3.4 -6.3 -0.9 14 14 A G + 0 0 64 -2,-0.3 2,-0.7 2,-0.1 -2,-0.0 -0.987 50.0 31.3-157.8 148.0 5.8 -7.5 1.7 15 15 A G S S- 0 0 91 -2,-0.3 2,-0.4 2,-0.1 18,-0.1 -0.879 117.0 -1.5 113.2-102.7 9.3 -6.7 2.9 16 16 A G S S+ 0 0 48 -2,-0.7 2,-0.4 16,-0.1 -14,-0.3 -0.731 84.6 132.1-131.9 82.6 10.2 -3.1 2.7 17 17 A a - 0 0 30 -2,-0.4 2,-0.4 16,-0.1 15,-0.2 -0.993 52.9-120.6-134.4 141.2 7.5 -1.0 1.1 18 18 A R - 0 0 140 -2,-0.4 13,-2.0 1,-0.1 2,-1.0 -0.664 20.3-144.5 -81.9 128.3 5.9 2.3 2.2 19 19 A b E -B 30 0A 67 -2,-0.4 11,-0.2 11,-0.2 -13,-0.1 -0.800 18.5-173.2 -96.8 96.5 2.2 2.0 2.8 20 20 A W E -B 29 0A 162 9,-2.7 9,-2.6 -2,-1.0 -13,-0.2 -0.831 23.2-126.3 -93.6 115.5 0.8 5.3 1.6 21 21 A P E -B 28 0A 102 0, 0.0 7,-0.3 0, 0.0 2,-0.1 -0.177 25.3-161.8 -59.3 150.3 -3.0 5.6 2.5 22 22 A T - 0 0 70 5,-3.2 4,-0.1 2,-0.6 5,-0.1 -0.061 45.9 -64.9-110.4-147.4 -5.5 6.4 -0.3 23 23 A V S S+ 0 0 148 -2,-0.1 5,-0.1 2,-0.1 0, 0.0 0.718 114.9 74.8 -80.3 -21.7 -9.0 7.7 -0.3 24 24 A T S > S- 0 0 80 3,-0.2 3,-2.6 1,-0.0 -2,-0.6 -0.822 92.1-116.2 -98.0 124.6 -10.3 4.6 1.5 25 25 A P T 3 S+ 0 0 128 0, 0.0 3,-0.1 0, 0.0 -2,-0.1 -0.414 104.9 15.7 -59.8 113.1 -9.6 4.2 5.2 26 26 A G T 3 S+ 0 0 50 -2,-0.4 -17,-1.0 1,-0.3 2,-0.4 0.303 107.5 104.3 103.6 -6.8 -7.3 1.2 5.6 27 27 A V E < +A 8 0A 14 -3,-2.6 -5,-3.2 -19,-0.2 -1,-0.3 -0.905 41.5 141.5-110.2 134.3 -6.5 1.2 1.9 28 28 A G E -AB 7 21A 1 -21,-1.6 -21,-2.0 -2,-0.4 2,-0.4 -0.860 42.3-101.0-153.1-172.5 -3.2 2.4 0.5 29 29 A I E -AB 6 20A 77 -9,-2.6 -9,-2.7 -23,-0.3 2,-0.4 -0.974 26.8-124.2-127.9 138.3 -0.4 1.8 -2.0 30 30 A c E -AB 5 19A 0 -25,-2.3 -26,-1.2 -2,-0.4 -25,-1.0 -0.640 29.6-156.1 -80.7 130.4 3.0 0.2 -1.6 31 31 A S - 0 0 26 -13,-2.0 -29,-0.5 -2,-0.4 -15,-0.1 -0.348 37.3 -81.7 -98.0-179.6 5.9 2.3 -2.6 32 32 A S 0 0 60 1,-0.2 -30,-1.0 -31,-0.2 -16,-0.1 0.873 360.0 360.0 -48.8 -48.1 9.4 1.5 -3.7 33 33 A S 0 0 84 -32,-0.1 -1,-0.2 -31,-0.1 -16,-0.1 0.232 360.0 360.0-152.3 360.0 10.7 1.1 -0.2