==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-MAR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 03-SEP-09 2KNS . COMPND 2 MOLECULE: PARDAXIN P-4; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.BHUNIA,S.BHATTACHARJYA,A.RAMAMOORTHY . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3147.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 57.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 18.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 39.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 81 0, 0.0 4,-0.7 0, 0.0 3,-0.3 0.000 360.0 360.0 360.0 71.0 2.1 0.0 -1.2 2 2 A F T 4 + 0 0 184 1,-0.2 4,-0.0 2,-0.2 0, 0.0 0.607 360.0 43.7 -69.9 -10.8 0.3 -2.6 -3.4 3 3 A F T 4 S+ 0 0 202 2,-0.1 -1,-0.2 1,-0.1 3,-0.1 0.567 122.0 36.3-107.1 -16.3 2.5 -1.3 -6.3 4 4 A A T > S+ 0 0 59 -3,-0.3 4,-0.7 2,-0.1 -2,-0.2 0.145 88.2 95.7-121.1 15.8 5.7 -1.1 -4.3 5 5 A L H X S+ 0 0 67 -4,-0.7 4,-1.7 1,-0.2 -3,-0.1 0.621 70.6 74.0 -80.8 -13.6 5.2 -4.2 -2.1 6 6 A I H > S+ 0 0 102 2,-0.2 4,-0.8 1,-0.2 -1,-0.2 0.960 101.4 38.1 -62.9 -53.5 7.3 -6.2 -4.6 7 7 A P H > S+ 0 0 85 0, 0.0 4,-0.7 0, 0.0 -1,-0.2 0.755 118.9 50.4 -69.8 -25.3 10.7 -4.8 -3.6 8 8 A K H X S+ 0 0 126 -4,-0.7 4,-1.1 2,-0.2 -2,-0.2 0.719 95.2 71.7 -84.6 -23.5 9.5 -4.7 0.1 9 9 A I H < S+ 0 0 57 -4,-1.7 6,-0.2 1,-0.2 -1,-0.2 0.865 110.5 31.2 -59.5 -37.5 8.4 -8.3 -0.0 10 10 A I H < S+ 0 0 30 -4,-0.8 -1,-0.2 2,-0.2 -2,-0.2 0.660 100.6 83.0 -93.5 -20.2 12.1 -9.4 -0.1 11 11 A S H < S+ 0 0 100 -4,-0.7 -2,-0.2 -5,-0.1 -1,-0.2 0.859 107.7 25.9 -51.0 -38.5 13.3 -6.5 1.9 12 12 A S S < S+ 0 0 112 -4,-1.1 -2,-0.2 -3,-0.1 -1,-0.1 0.927 125.4 38.2 -88.6 -71.3 12.4 -8.4 5.0 13 13 A P S S- 0 0 62 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.079 73.8-129.1 -69.7-173.5 12.5 -12.1 4.1 14 14 A L S > S+ 0 0 138 1,-0.1 3,-0.5 2,-0.0 -4,-0.1 -0.101 70.5 114.2-133.2 34.8 15.0 -13.9 1.9 15 15 A F T >> + 0 0 59 -6,-0.2 3,-2.0 1,-0.2 4,-1.7 0.276 34.3 119.8 -88.7 10.8 12.7 -15.8 -0.5 16 16 A K H 3> + 0 0 116 1,-0.3 4,-1.1 2,-0.2 -1,-0.2 0.787 65.8 68.0 -44.9 -29.9 14.0 -13.6 -3.3 17 17 A T H <4 S+ 0 0 113 -3,-0.5 -1,-0.3 1,-0.2 3,-0.2 0.907 109.6 32.0 -58.7 -43.9 15.2 -16.9 -4.8 18 18 A L H X> S+ 0 0 98 -3,-2.0 4,-3.0 1,-0.2 3,-1.1 0.601 101.1 84.2 -88.8 -13.6 11.6 -18.0 -5.4 19 19 A L H 3X S+ 0 0 47 -4,-1.7 4,-3.0 1,-0.3 5,-0.2 0.885 87.6 53.6 -55.1 -41.3 10.4 -14.5 -6.0 20 20 A S H 3< S+ 0 0 102 -4,-1.1 4,-0.4 -3,-0.2 -1,-0.3 0.740 113.3 44.7 -66.5 -22.7 11.5 -14.8 -9.6 21 21 A A H <> S+ 0 0 58 -3,-1.1 4,-0.9 -4,-0.2 -2,-0.2 0.869 120.0 37.2 -87.6 -43.0 9.3 -17.9 -9.8 22 22 A V H X S+ 0 0 67 -4,-3.0 4,-1.9 1,-0.2 -2,-0.2 0.770 113.9 57.8 -79.7 -27.6 6.2 -16.6 -8.0 23 23 A G H X S+ 0 0 36 -4,-3.0 4,-0.7 -5,-0.4 -1,-0.2 0.774 105.4 50.2 -73.3 -26.3 6.6 -13.2 -9.5 24 24 A S H 4 S+ 0 0 75 -4,-0.4 4,-0.2 -5,-0.2 -1,-0.2 0.805 115.1 42.3 -80.6 -31.7 6.4 -14.6 -13.0 25 25 A A H < S+ 0 0 70 -4,-0.9 -2,-0.2 2,-0.2 -1,-0.1 0.784 114.5 50.4 -83.8 -30.2 3.3 -16.6 -12.3 26 26 A L H < S+ 0 0 130 -4,-1.9 -2,-0.2 1,-0.2 -1,-0.2 0.689 118.8 38.7 -80.2 -19.6 1.6 -13.8 -10.3 27 27 A S S >< S+ 0 0 90 -4,-0.7 3,-1.0 -5,-0.1 -1,-0.2 0.408 95.7 82.0-107.8 -2.6 2.3 -11.3 -13.1 28 28 A S T 3 S+ 0 0 97 1,-0.2 3,-0.2 -4,-0.2 -2,-0.1 0.469 90.0 55.6 -80.6 -1.6 1.6 -13.8 -15.9 29 29 A S T > + 0 0 73 -3,-0.2 3,-1.6 1,-0.1 -1,-0.2 -0.016 65.3 120.5-118.6 27.0 -2.1 -13.1 -15.5 30 30 A G G X + 0 0 42 -3,-1.0 3,-2.0 1,-0.3 -1,-0.1 0.743 61.3 75.7 -63.1 -22.5 -2.0 -9.3 -15.9 31 31 A G G 3 S+ 0 0 84 1,-0.3 -1,-0.3 -3,-0.2 -2,-0.1 0.776 94.1 50.6 -60.2 -26.4 -4.4 -9.7 -18.8 32 32 A Q G < 0 0 176 -3,-1.6 -1,-0.3 0, 0.0 -2,-0.2 0.427 360.0 360.0 -90.5 -0.5 -7.2 -10.2 -16.3 33 33 A E < 0 0 209 -3,-2.0 -3,-0.0 -4,-0.2 0, 0.0 -0.720 360.0 360.0 -92.6 360.0 -6.1 -7.1 -14.5