==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 04-SEP-09 2KNU . COMPND 2 MOLECULE: GENOME POLYPROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.SPADACCINI,G.D'ERRICO,V.D'ALESSIO,E.NOTOMISTA,A.BIANCHI, . 28 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3052.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 17.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 17.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 179 0, 0.0 2,-1.9 0, 0.0 5,-0.0 0.000 360.0 360.0 360.0-158.4 -4.0 16.2 11.6 2 2 A G + 0 0 37 3,-0.0 2,-0.0 4,-0.0 0, 0.0 -0.469 360.0 163.9 73.5 -79.9 -0.8 15.6 9.6 3 3 A H > + 0 0 149 -2,-1.9 3,-1.7 1,-0.1 7,-0.1 -0.429 40.7 98.5 53.8-143.8 -1.6 17.3 6.2 4 4 A R T 3 S- 0 0 233 1,-0.3 -1,-0.1 2,-0.1 -2,-0.0 0.798 114.9 -8.0 38.6 68.6 1.9 17.6 4.5 5 5 A M T > S+ 0 0 105 4,-0.0 3,-2.2 5,-0.0 -1,-0.3 0.168 99.7 118.8 90.4 -1.7 1.7 14.6 2.2 6 6 A A G X>> + 0 0 18 -3,-1.7 3,-2.4 1,-0.3 5,-2.2 0.891 66.3 72.1 -41.2 -49.1 -1.5 13.2 3.8 7 7 A W G 345S+ 0 0 171 1,-0.3 -1,-0.3 3,-0.2 -3,-0.1 0.708 114.7 21.6 -46.5 -29.9 -2.9 13.7 0.3 8 8 A D G <45S+ 0 0 107 -3,-2.2 -1,-0.3 2,-0.0 -2,-0.2 -0.398 136.7 32.3-136.5 58.5 -0.8 10.7 -0.7 9 9 A M T <45S+ 0 0 130 -3,-2.4 -3,-0.2 0, 0.0 -2,-0.2 0.098 120.9 35.9-162.9 -52.7 -0.2 8.9 2.6 10 10 A M T <5S+ 0 0 103 -4,-1.2 2,-0.3 -5,-0.2 -3,-0.2 0.717 87.0 107.5 -88.3 -27.0 -3.2 9.4 5.0 11 11 A M < - 0 0 116 -5,-2.2 2,-1.3 1,-0.1 3,-0.1 -0.389 62.0-148.5 -54.9 118.9 -6.0 9.3 2.3 12 12 A N + 0 0 131 -2,-0.3 -1,-0.1 1,-0.2 -2,-0.1 -0.713 40.4 147.8 -87.1 87.3 -7.8 6.0 2.5 13 13 A W S S- 0 0 155 -2,-1.3 -1,-0.2 0, 0.0 0, 0.0 0.839 81.8 -50.4 -74.2 -95.9 -8.7 5.5 -1.1 14 14 A S + 0 0 77 -3,-0.1 2,-2.3 0, 0.0 3,-0.3 -0.514 64.3 172.1-141.9 66.9 -8.6 1.7 -1.5 15 15 A P > + 0 0 20 0, 0.0 4,-2.5 0, 0.0 5,-0.3 -0.228 15.6 164.8 -69.4 49.6 -5.2 0.6 0.0 16 16 A T T 4 S+ 0 0 101 -2,-2.3 4,-0.1 1,-0.3 0, 0.0 0.812 77.7 15.9 -41.3 -58.9 -6.4 -3.0 -0.4 17 17 A A T >> S+ 0 0 56 -3,-0.3 4,-3.0 2,-0.1 3,-1.9 0.779 115.5 73.3 -83.6 -32.9 -3.0 -4.6 0.1 18 18 A A H 3> S+ 0 0 49 1,-0.3 4,-2.8 2,-0.2 -2,-0.2 0.881 95.8 51.8 -58.1 -36.1 -1.3 -1.5 1.6 19 19 A L H 3< S+ 0 0 93 -4,-2.5 -1,-0.3 2,-0.2 4,-0.2 0.697 114.2 46.2 -63.5 -24.4 -3.2 -2.0 5.0 20 20 A V H X> S+ 0 0 52 -3,-1.9 4,-2.9 -5,-0.3 3,-1.8 0.879 109.6 50.5 -81.8 -50.6 -1.9 -5.6 4.8 21 21 A V H 3X S+ 0 0 71 -4,-3.0 4,-2.5 1,-0.3 -2,-0.2 0.914 103.4 63.4 -52.8 -40.0 1.7 -4.5 3.9 22 22 A A H 3< S+ 0 0 37 -4,-2.8 4,-0.3 -5,-0.3 -1,-0.3 0.762 113.3 32.8 -50.8 -34.1 1.3 -2.2 6.9 23 23 A Q H <4 S+ 0 0 135 -3,-1.8 -2,-0.2 -4,-0.2 -1,-0.2 0.767 124.4 45.0 -95.1 -33.8 0.9 -5.4 9.1 24 24 A L H < S- 0 0 117 -4,-2.9 -3,-0.2 1,-0.1 -2,-0.2 0.965 133.5 -10.6 -71.6 -61.3 3.3 -7.7 7.0 25 25 A L < + 0 0 130 -4,-2.5 -1,-0.1 -5,-0.2 -3,-0.1 -0.485 65.0 146.7-155.3 64.2 6.4 -5.6 6.3 26 26 A R S S+ 0 0 190 -4,-0.3 -4,-0.1 -3,-0.1 -1,-0.0 0.082 72.2 61.4 -89.5 20.1 6.2 -1.9 7.1 27 27 A I 0 0 116 -3,-0.0 0, 0.0 0, 0.0 0, 0.0 -0.865 360.0 360.0-141.6 162.7 9.9 -2.0 8.0 28 28 A P 0 0 174 0, 0.0 -2,-0.1 0, 0.0 -3,-0.0 -0.376 360.0 360.0 -83.0 360.0 13.0 -2.8 5.9