==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 04-OCT-09 2KP0 . COMPND 2 MOLECULE: NASONIN-1M; . SOURCE 2 SYNTHETIC: YES; . AUTHOR T.KOUNO,C.TIAN,L.LUO,S.ZHU,M.MIZUGUCHI . 33 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3016.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 51.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 18.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 27.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 123 0, 0.0 24,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 81.4 15.5 -3.5 0.9 2 2 A a - 0 0 18 23,-0.1 5,-0.2 4,-0.0 23,-0.0 0.742 360.0-151.7 -79.6 -20.9 11.7 -2.8 0.6 3 3 A N > - 0 0 96 1,-0.1 4,-2.9 3,-0.1 5,-0.4 0.947 5.1-146.8 48.0 84.2 11.3 -2.3 4.3 4 4 A D H > S+ 0 0 97 1,-0.2 4,-1.5 2,-0.2 5,-0.2 0.800 98.4 51.9 -52.0 -25.8 7.7 -3.3 4.8 5 5 A R H > S+ 0 0 208 2,-0.2 4,-1.6 1,-0.2 -1,-0.2 0.928 115.3 36.7 -79.4 -45.2 7.5 -0.7 7.5 6 6 A D H > S+ 0 0 102 2,-0.2 4,-1.1 -3,-0.2 -2,-0.2 0.721 119.4 52.0 -79.6 -18.4 8.9 2.2 5.5 7 7 A b H X S+ 0 0 17 -4,-2.9 4,-1.6 -5,-0.2 5,-0.2 0.904 113.1 40.8 -83.5 -43.4 7.1 1.0 2.4 8 8 A S H X S+ 0 0 38 -4,-1.5 4,-3.1 -5,-0.4 5,-0.2 0.905 115.7 51.2 -72.2 -39.6 3.6 0.7 3.9 9 9 A L H X S+ 0 0 115 -4,-1.6 4,-1.4 -5,-0.2 5,-0.2 0.969 113.0 43.7 -63.1 -51.4 3.9 3.9 6.0 10 10 A D H X S+ 0 0 87 -4,-1.1 4,-1.6 -5,-0.2 -1,-0.2 0.888 118.1 46.6 -62.8 -36.0 5.0 6.1 3.0 11 11 A c H X>S+ 0 0 8 -4,-1.6 5,-1.6 2,-0.2 4,-1.1 0.933 109.2 52.2 -73.4 -43.8 2.3 4.4 0.8 12 12 A I H <5S+ 0 0 98 -4,-3.1 -1,-0.2 1,-0.2 -2,-0.2 0.798 110.3 52.0 -63.4 -23.2 -0.5 4.8 3.4 13 13 A M H <5S+ 0 0 164 -4,-1.4 -1,-0.2 -5,-0.2 -2,-0.2 0.895 97.0 63.6 -80.2 -39.5 0.4 8.5 3.6 14 14 A K H <5S- 0 0 144 -4,-1.6 -1,-0.2 -5,-0.2 -2,-0.2 0.842 128.5 -93.4 -54.0 -29.6 0.2 9.1 -0.1 15 15 A G T <5S+ 0 0 33 -4,-1.1 -3,-0.2 1,-0.1 -1,-0.1 0.423 84.9 128.7 128.4 5.8 -3.5 8.2 0.1 16 16 A Y < - 0 0 98 -5,-1.6 14,-0.2 1,-0.1 -1,-0.1 -0.161 53.4-137.1 -80.4-178.0 -3.5 4.5 -0.7 17 17 A N S S- 0 0 93 12,-2.3 2,-0.3 1,-0.4 13,-0.2 0.800 71.3 -14.4-108.3 -51.4 -5.1 1.8 1.5 18 18 A F E +A 29 0A 88 11,-1.4 11,-4.1 -7,-0.1 -1,-0.4 -0.990 58.8 165.4-151.4 159.1 -2.7 -1.1 1.6 19 19 A G E -A 28 0A 25 9,-0.3 9,-0.3 -2,-0.3 2,-0.3 -0.778 10.8-161.4-153.4-162.1 0.5 -2.4 -0.1 20 20 A K E -A 27 0A 103 7,-3.0 7,-2.0 -2,-0.2 2,-0.3 -0.935 32.5 -84.7 176.8 160.9 3.3 -4.9 0.3 21 21 A a E -A 26 0A 37 -2,-0.3 2,-0.4 5,-0.2 5,-0.2 -0.623 41.1-170.6 -82.9 137.8 6.8 -5.8 -0.9 22 22 A V E > -A 25 0A 49 3,-0.6 3,-1.6 -2,-0.3 -2,-0.0 -0.987 65.6 -19.8-131.8 131.1 7.1 -7.9 -4.1 23 23 A R T 3 S- 0 0 226 -2,-0.4 -1,-0.1 1,-0.3 3,-0.1 0.880 131.5 -48.2 42.9 41.0 10.2 -9.5 -5.6 24 24 A G T 3 S+ 0 0 65 1,-0.2 -1,-0.3 -3,-0.0 2,-0.2 0.816 122.9 110.9 72.5 27.2 12.2 -7.1 -3.5 25 25 A S E < -A 22 0A 56 -3,-1.6 -3,-0.6 -23,-0.0 2,-0.4 -0.576 68.2-119.0-121.1-173.4 10.0 -4.2 -4.7 26 26 A b E +A 21 0A 49 -5,-0.2 2,-0.3 -2,-0.2 -5,-0.2 -0.847 37.6 161.0-134.7 101.2 7.4 -1.8 -3.1 27 27 A Q E -A 20 0A 124 -7,-2.0 -7,-3.0 -2,-0.4 2,-0.3 -0.863 12.1-173.0-118.6 154.4 3.9 -1.8 -4.5 28 28 A c E -A 19 0A 27 -2,-0.3 2,-0.3 -9,-0.3 -9,-0.3 -0.905 12.6-137.4-139.2 168.2 0.6 -0.6 -3.0 29 29 A R E -A 18 0A 137 -11,-4.1 -12,-2.3 -2,-0.3 -11,-1.4 -0.927 8.2-143.7-128.8 154.7 -3.1 -0.7 -3.8 30 30 A R - 0 0 160 -2,-0.3 2,-0.2 -14,-0.2 -14,-0.1 -0.949 13.2-162.3-119.9 136.0 -5.9 2.0 -3.6 31 31 A T + 0 0 60 -2,-0.4 2,-0.2 0, 0.0 -2,-0.0 -0.707 10.1 176.7-111.3 165.6 -9.5 1.2 -2.6 32 32 A S 0 0 121 -2,-0.2 -15,-0.0 -15,-0.0 0, 0.0 -0.818 360.0 360.0-149.7-170.1 -12.7 3.3 -3.1 33 33 A G 0 0 150 -2,-0.2 0, 0.0 0, 0.0 0, 0.0 -0.724 360.0 360.0 164.2 360.0 -16.5 3.3 -2.6