==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM 27-OCT-09 2KQ4 . COMPND 2 MOLECULE: IMMUNOGLOBULIN G-BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. 'GROUP G'; . AUTHOR A.J.NIEUWKOOP,B.J.WYLIE,W.FRANKS,G.J.SHAH,C.M.RIENSTRA . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3639.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 73.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 X M 0 0 86 0, 0.0 19,-1.0 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 172.8 26.7 -10.4 -3.9 2 2 X Q E -A 19 0A 115 17,-0.2 2,-0.4 19,-0.0 17,-0.2 -0.938 360.0-149.5-125.6 148.0 25.1 -8.3 -6.6 3 3 X Y E -A 18 0A 2 15,-1.7 15,-1.7 -2,-0.3 2,-0.5 -0.904 7.4-152.1-115.7 143.1 25.7 -7.9 -10.3 4 4 X K E -Ab 17 51A 70 46,-1.2 48,-3.2 -2,-0.4 2,-0.5 -0.963 3.9-160.4-119.6 127.1 25.2 -4.7 -12.4 5 5 X L E -Ab 16 52A 1 11,-4.4 11,-1.9 -2,-0.5 2,-0.4 -0.907 10.1-148.4-107.6 127.1 24.4 -4.8 -16.1 6 6 X I E -Ab 15 53A 44 46,-2.4 48,-1.4 -2,-0.5 2,-0.9 -0.805 11.1-135.2 -98.4 132.9 25.0 -1.6 -18.1 7 7 X L E +Ab 14 54A 6 7,-2.1 7,-0.8 -2,-0.4 2,-0.5 -0.770 34.0 161.1 -91.8 107.7 22.7 -0.8 -21.0 8 8 X N E +Ab 13 55A 47 46,-1.2 48,-0.9 -2,-0.9 5,-0.2 -0.805 25.6 134.6-125.8 85.9 24.7 0.2 -24.1 9 9 X G S S- 0 0 16 3,-1.3 30,-0.1 -2,-0.5 32,-0.0 -0.347 70.5 -77.4-116.1-162.7 22.5 -0.2 -27.1 10 10 X K S S- 0 0 162 -2,-0.1 29,-0.1 1,-0.1 3,-0.0 0.971 117.6 -19.2 -66.7 -54.5 21.4 1.7 -30.1 11 11 X T S S+ 0 0 137 1,-0.1 2,-0.7 -3,-0.0 -1,-0.1 0.408 118.5 92.9-130.9 -8.8 19.0 4.1 -28.3 12 12 X L + 0 0 54 26,-0.1 -3,-1.3 2,-0.0 2,-0.4 -0.829 48.7 161.5 -95.9 114.7 18.3 2.3 -25.1 13 13 X K E +A 8 0A 108 -2,-0.7 2,-0.3 -5,-0.2 -5,-0.2 -0.990 15.6 96.3-135.5 142.6 20.6 3.2 -22.2 14 14 X G E -A 7 0A 30 -7,-0.8 -7,-2.1 -2,-0.4 2,-0.3 -0.955 59.4 -77.2 174.3-158.0 20.4 2.8 -18.4 15 15 X E E -A 6 0A 109 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.966 29.1-173.6-134.2 150.9 21.4 0.5 -15.5 16 16 X T E +A 5 0A 30 -11,-1.9 -11,-4.4 -2,-0.3 2,-0.3 -0.971 5.7 176.8-148.0 129.4 20.2 -2.9 -14.2 17 17 X T E -A 4 0A 72 -2,-0.3 2,-0.3 -13,-0.3 -13,-0.2 -0.919 3.5-174.4-131.4 157.4 21.1 -4.8 -11.0 18 18 X T E -A 3 0A 35 -15,-1.7 -15,-1.7 -2,-0.3 2,-0.7 -0.990 26.1-124.2-149.5 153.0 20.0 -8.1 -9.4 19 19 X E E +A 2 0A 112 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.873 46.4 152.7-103.9 105.8 20.7 -10.0 -6.2 20 20 X A - 0 0 13 -19,-1.0 -2,-0.1 -2,-0.7 3,-0.0 -0.896 47.3-140.7-131.6 161.6 21.9 -13.5 -7.0 21 21 X V S S+ 0 0 129 -2,-0.3 2,-0.3 1,-0.0 -1,-0.1 0.819 90.9 42.8 -87.0 -37.4 24.0 -16.2 -5.3 22 22 X D S > S- 0 0 85 1,-0.1 4,-0.9 -21,-0.0 -1,-0.0 -0.780 72.3-137.2-111.3 156.0 25.6 -17.3 -8.6 23 23 X A H > S+ 0 0 16 -2,-0.3 4,-1.3 2,-0.2 3,-0.2 0.914 104.6 49.4 -75.0 -46.2 27.0 -15.3 -11.5 24 24 X A H > S+ 0 0 49 1,-0.2 4,-0.9 2,-0.2 3,-0.2 0.879 107.7 54.4 -62.4 -39.8 25.6 -17.5 -14.2 25 25 X T H > S+ 0 0 54 1,-0.2 4,-0.7 2,-0.2 3,-0.4 0.842 105.1 55.2 -64.1 -31.9 22.1 -17.5 -12.7 26 26 X A H >X S+ 0 0 1 -4,-0.9 4,-1.7 1,-0.2 3,-0.7 0.859 99.1 60.5 -68.0 -35.9 22.2 -13.7 -12.7 27 27 X E H 3X S+ 0 0 73 -4,-1.3 4,-4.1 1,-0.2 5,-0.4 0.789 91.2 70.1 -61.8 -28.4 22.9 -13.6 -16.4 28 28 X K H 3X S+ 0 0 139 -4,-0.9 4,-2.0 -3,-0.4 -1,-0.2 0.915 104.4 39.9 -56.9 -43.1 19.6 -15.4 -17.0 29 29 X V H X S+ 0 0 121 -4,-2.0 4,-1.2 -5,-0.4 3,-0.8 0.841 110.8 61.7 -71.8 -33.7 16.5 -12.6 -21.0 33 33 X Y H 3X S+ 0 0 71 -4,-3.2 4,-2.0 1,-0.2 5,-0.3 0.807 92.3 67.4 -61.4 -30.5 15.8 -9.1 -19.9 34 34 X A H 3X>S+ 0 0 2 -4,-1.2 4,-2.7 -3,-0.2 5,-2.2 0.887 100.1 47.8 -59.3 -39.3 17.5 -7.9 -23.0 35 35 X N H <<5S+ 0 0 125 -3,-0.8 -1,-0.2 -4,-0.6 -2,-0.2 0.862 109.7 54.4 -69.1 -34.8 14.7 -9.3 -25.2 36 36 X D H <5S+ 0 0 114 -4,-1.2 -2,-0.2 1,-0.2 -1,-0.2 0.836 118.9 32.1 -67.3 -35.3 12.2 -7.6 -22.9 37 37 X N H <5S- 0 0 35 -4,-2.0 -2,-0.2 2,-0.1 -1,-0.2 0.748 114.6-111.2 -95.4 -25.2 13.7 -4.2 -23.3 38 38 X G T <5S+ 0 0 56 -4,-2.7 2,-0.5 -5,-0.3 -3,-0.2 0.723 72.2 126.3 103.2 28.6 15.0 -4.6 -26.9 39 39 X V < + 0 0 3 -5,-2.2 2,-0.5 -6,-0.2 -1,-0.2 -0.945 23.9 167.4-122.8 113.3 18.8 -4.7 -26.5 40 40 X D + 0 0 128 -2,-0.5 2,-0.2 16,-0.1 -9,-0.0 -0.925 23.6 121.0-127.3 108.0 20.7 -7.6 -28.1 41 41 X G - 0 0 19 -2,-0.5 2,-0.4 15,-0.1 15,-0.3 -0.719 65.5 -44.6-145.2-165.7 24.5 -7.3 -28.4 42 42 X E B -C 55 0A 151 13,-3.1 13,-1.8 -2,-0.2 2,-0.2 -0.587 57.8-147.8 -75.6 125.1 27.8 -8.9 -27.4 43 43 X W + 0 0 60 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 -0.512 20.2 172.3 -91.8 161.5 27.9 -9.8 -23.7 44 44 X T - 0 0 80 9,-0.4 9,-0.9 -2,-0.2 2,-0.3 -0.950 7.5-168.9-156.9 167.6 30.8 -9.8 -21.3 45 45 X Y E -D 52 0A 71 -2,-0.3 2,-0.5 7,-0.2 7,-0.2 -0.845 13.0-166.0-171.1 133.6 31.4 -10.3 -17.5 46 46 X D E >>> -D 51 0A 70 5,-1.1 3,-1.7 -2,-0.3 5,-1.0 -0.964 7.0-163.7-124.0 112.4 34.1 -9.9 -14.9 47 47 X D T 345S+ 0 0 78 -2,-0.5 -1,-0.1 1,-0.3 5,-0.0 0.685 91.2 66.1 -67.2 -16.7 33.4 -11.6 -11.5 48 48 X A T 345S+ 0 0 85 1,-0.2 -1,-0.3 3,-0.1 -2,-0.0 0.620 115.4 26.7 -79.3 -13.0 36.2 -9.4 -10.1 49 49 X T T <45S- 0 0 83 -3,-1.7 -2,-0.2 2,-0.1 -1,-0.2 0.306 97.4-132.7-128.2 2.9 34.1 -6.3 -10.7 50 50 X K T <5 + 0 0 61 -4,-0.8 -46,-1.2 1,-0.2 2,-0.3 0.917 62.6 129.8 41.6 58.6 30.6 -7.8 -10.6 51 51 X T E < -bD 4 46A 50 -5,-1.0 -5,-1.1 -48,-0.2 2,-0.3 -0.953 39.8-167.3-148.5 127.5 29.6 -6.0 -13.8 52 52 X F E -bD 5 45A 6 -48,-3.2 -46,-2.4 -2,-0.3 2,-0.3 -0.761 7.8-172.5-107.9 155.4 27.9 -7.1 -17.0 53 53 X T E -b 6 0A 43 -9,-0.9 2,-0.5 -2,-0.3 -9,-0.4 -0.949 11.1-160.2-152.5 130.0 27.7 -5.1 -20.3 54 54 X V E -b 7 0A 0 -48,-1.4 -46,-1.2 -2,-0.3 2,-0.5 -0.942 12.6-174.0-113.8 123.7 25.8 -5.7 -23.6 55 55 X T E bC 8 42A 63 -13,-1.8 -13,-3.1 -2,-0.5 -46,-0.2 -0.971 360.0 360.0-121.7 125.0 27.0 -3.8 -26.7 56 56 X E 0 0 93 -48,-0.9 -16,-0.1 -2,-0.5 -15,-0.1 -0.549 360.0 360.0-123.1 360.0 25.2 -3.9 -30.1