==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JUL-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 11-NOV-09 2KQL . COMPND 2 MOLECULE: D-MAUROCALCINE; . SOURCE 2 SYNTHETIC: YES . AUTHOR K.DRIDI,C.BERNARD,H.DARBON . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2943.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 51.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 21.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 129 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-165.1 3.8 -1.9 -0.0 2 2 A X + 0 0 141 1,-0.0 2,-0.3 3,-0.0 0, 0.0 -0.523 360.0 151.7 71.5-129.5 6.1 -4.4 -1.4 3 3 A X + 0 0 51 -2,-0.3 2,-0.7 13,-0.0 13,-0.3 -0.747 22.2 106.5 104.2-152.6 6.3 -4.2 -5.2 4 4 A X B +a 16 0A 19 11,-2.1 13,-2.7 -2,-0.3 14,-0.5 -0.692 44.3 143.2 77.1-113.4 9.2 -5.1 -7.4 5 5 A X > + 0 0 58 -2,-0.7 3,-1.1 11,-0.2 27,-0.3 -0.102 28.9 75.4 74.3-175.8 8.1 -8.4 -9.1 6 6 A X T 3 S- 0 0 129 1,-0.3 27,-0.3 25,-0.1 -1,-0.1 -0.522 119.2 -25.1 75.6-140.7 8.8 -9.5 -12.6 7 7 A X T 3 S- 0 0 92 25,-2.2 -1,-0.3 1,-0.3 2,-0.2 0.616 106.7-106.6 -77.2 -23.4 12.4 -10.6 -13.3 8 8 A X E < S+B 32 0B 119 24,-1.6 24,-2.1 -3,-1.1 -1,-0.3 -0.748 79.4 68.7 126.0-167.5 13.6 -8.5 -10.3 9 9 A X E +B 31 0B 105 22,-0.3 22,-0.3 -2,-0.2 2,-0.2 -0.133 47.3 134.1 53.5-147.1 15.5 -5.2 -9.9 10 10 A X - 0 0 19 20,-2.4 20,-0.1 1,-0.1 -1,-0.1 -0.549 41.4-146.6 97.3-171.0 14.0 -1.9 -11.0 11 11 A X S S- 0 0 189 -2,-0.2 2,-0.3 -7,-0.1 -1,-0.1 0.080 83.0 -1.7 166.1 47.0 13.8 1.4 -9.3 12 12 A X > + 0 0 94 1,-0.1 4,-1.1 -8,-0.0 3,-0.4 -0.959 60.3 138.0 152.8-135.2 10.5 2.8 -10.4 13 13 A X T 4 S- 0 0 68 -2,-0.3 6,-0.4 1,-0.3 3,-0.3 0.873 108.4 -57.1 66.3 34.7 8.0 1.2 -12.8 14 14 A X T 4 S- 0 0 150 1,-0.2 -1,-0.3 5,-0.1 6,-0.1 0.822 105.7 -51.3 59.8 32.5 5.2 2.2 -10.5 15 15 A X T 4 S- 0 0 74 -3,-0.4 -11,-2.1 -12,-0.1 -1,-0.2 0.758 92.6 -90.8 81.2 24.5 6.9 0.3 -7.8 16 16 A X B < S+a 4 0A 1 -4,-1.1 3,-0.2 -3,-0.3 -11,-0.2 -0.494 82.0 132.2 69.0-140.0 7.2 -2.7 -10.0 17 17 A X S S- 0 0 61 -13,-2.7 -12,-0.2 1,-0.2 -1,-0.1 0.894 110.6 -36.6 61.1 38.8 4.1 -5.0 -9.6 18 18 A X S S+ 0 0 42 -14,-0.5 -1,-0.2 15,-0.2 3,-0.1 0.563 101.7 134.5 90.1 12.1 3.7 -5.2 -13.4 19 19 A X - 0 0 127 -6,-0.4 2,-1.0 -15,-0.3 -6,-0.1 0.550 68.5-124.6 -63.5 -11.9 4.8 -1.6 -13.9 20 20 A X - 0 0 111 13,-0.4 13,-3.1 -7,-0.1 2,-0.8 -0.809 37.4-179.3 103.7 -91.8 7.0 -2.9 -16.8 21 21 A X E -C 32 0B 28 -2,-1.0 11,-0.3 11,-0.3 2,-0.2 -0.855 18.9-145.4 97.9-109.0 10.4 -1.6 -16.0 22 22 A X E +C 31 0B 111 9,-2.6 9,-2.3 -2,-0.8 2,-0.3 -0.409 27.8 148.4 124.7 163.4 12.8 -2.7 -18.7 23 23 A X E -C 30 0B 125 7,-0.3 7,-0.2 -2,-0.2 6,-0.2 -0.933 41.4 -46.4 156.8-179.1 16.4 -3.8 -18.9 24 24 A X - 0 0 158 5,-0.7 2,-0.6 3,-0.3 4,-0.2 0.269 52.5 -97.1 -71.1-171.7 19.0 -5.9 -20.7 25 25 A G S S+ 0 0 73 1,-0.2 -1,-0.1 3,-0.0 3,-0.1 -0.936 107.9 1.2-115.1 108.9 19.0 -9.5 -21.8 26 26 A X S S- 0 0 135 -2,-0.6 2,-0.4 1,-0.2 -1,-0.2 0.623 143.3 -36.7 89.4 14.7 20.8 -11.8 -19.4 27 27 A X S S+ 0 0 56 2,-0.2 -3,-0.3 -3,-0.1 -1,-0.2 -0.998 71.3 147.7 139.4-134.6 21.5 -8.8 -17.1 28 28 A X - 0 0 117 -2,-0.4 -4,-0.2 -4,-0.2 3,-0.1 0.689 68.5 -97.9 78.0 19.6 22.2 -5.3 -18.3 29 29 A X S S+ 0 0 133 -6,-0.2 -5,-0.7 1,-0.1 2,-0.5 -0.125 88.7 88.8 74.0-165.1 20.5 -3.6 -15.4 30 30 A X E - C 0 23B 115 -7,-0.2 -20,-2.4 -20,-0.1 2,-0.4 -0.619 55.2-175.8 75.0-121.3 17.1 -2.1 -15.2 31 31 A X E +BC 9 22B 42 -9,-2.3 -9,-2.6 -2,-0.5 2,-0.4 -0.990 33.1 119.7 136.0-138.0 14.7 -4.9 -14.1 32 32 A X E BC 8 21B 0 -24,-2.1 -25,-2.2 -2,-0.4 -24,-1.6 -0.656 360.0 360.0 77.2-126.7 11.0 -5.0 -13.7 33 33 A X 0 0 71 -13,-3.1 -13,-0.4 -2,-0.4 -15,-0.2 0.040 360.0 360.0 140.6 360.0 9.5 -7.7 -16.0