==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 14-JAN-02 1KSM . COMPND 2 MOLECULE: VITAMIN D-DEPENDENT CALCIUM-BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS; . AUTHOR I.BERTINI,A.DONAIRE,C.LUCHINAT,M.PICCIOLI,L.POGGI,G.PARIGI, . 75 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5329.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 47 62.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 12.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 44.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 3 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 221 0, 0.0 5,-0.0 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 8.3 2.1 0.0 -1.2 2 2 A S > - 0 0 49 1,-0.1 4,-0.8 4,-0.0 0, 0.0 -0.306 360.0-124.8 -76.8 163.7 -1.0 1.3 -3.0 3 3 A P H > S+ 0 0 96 0, 0.0 4,-1.6 0, 0.0 3,-0.4 0.893 110.6 54.1 -75.0 -42.9 -1.0 4.3 -5.3 4 4 A E H > S+ 0 0 148 1,-0.3 4,-2.3 2,-0.2 5,-0.1 0.837 106.7 53.7 -59.3 -34.5 -3.8 6.1 -3.4 5 5 A E H > S+ 0 0 108 1,-0.2 4,-3.3 2,-0.2 5,-0.4 0.820 101.6 59.3 -69.4 -32.3 -1.7 5.7 -0.2 6 6 A L H X S+ 0 0 37 -4,-0.8 4,-2.3 -3,-0.4 -1,-0.2 0.908 109.3 43.1 -61.9 -43.7 1.2 7.3 -2.0 7 7 A K H X S+ 0 0 116 -4,-1.6 4,-3.1 2,-0.2 5,-0.3 0.940 117.7 46.1 -66.9 -49.2 -0.8 10.5 -2.5 8 8 A G H X S+ 0 0 39 -4,-2.3 4,-2.8 2,-0.2 -2,-0.2 0.976 118.1 40.0 -56.6 -62.3 -2.2 10.4 1.0 9 9 A I H X S+ 0 0 46 -4,-3.3 4,-1.6 1,-0.2 5,-0.2 0.908 114.5 56.5 -53.9 -45.5 1.1 9.7 2.7 10 10 A F H >X S+ 0 0 15 -4,-2.3 4,-3.6 -5,-0.4 3,-0.9 0.942 111.6 40.1 -50.9 -56.8 2.7 12.1 0.3 11 11 A E H 3X S+ 0 0 86 -4,-3.1 4,-2.8 1,-0.3 -1,-0.2 0.838 108.3 63.4 -62.3 -34.3 0.4 15.0 1.3 12 12 A K H 3< S+ 0 0 152 -4,-2.8 -1,-0.3 -5,-0.3 -2,-0.2 0.813 116.2 30.9 -59.4 -30.6 0.7 13.8 4.9 13 13 A Y H - 0 0 76 1,-0.2 3,-1.2 2,-0.1 -2,-0.1 -0.289 57.2-136.7 -57.5 137.5 2.5 23.8 1.4 20 20 A P T 3 S+ 0 0 32 0, 0.0 -5,-0.2 0, 0.0 -6,-0.2 0.464 99.6 76.7 -75.1 -1.2 1.6 20.2 0.7 21 21 A N T 3 S+ 0 0 119 -7,-0.2 2,-0.3 1,-0.1 41,-0.1 0.288 99.9 44.5 -89.9 8.5 1.5 21.2 -3.0 22 22 A Q S < S- 0 0 67 -3,-1.2 2,-0.2 -8,-0.2 -1,-0.1 -0.956 74.6-142.3-155.7 133.1 5.3 21.2 -2.9 23 23 A L - 0 0 0 -2,-0.3 38,-1.4 -3,-0.1 2,-0.3 -0.566 18.5-166.3 -93.5 159.2 7.9 18.8 -1.6 24 24 A S > - 0 0 43 -2,-0.2 4,-4.2 36,-0.2 5,-0.4 -0.860 36.1-101.8-138.3 171.5 11.2 19.8 0.0 25 25 A K H > S+ 0 0 75 -2,-0.3 4,-3.3 2,-0.2 5,-0.1 0.967 125.1 38.2 -58.4 -56.6 14.5 18.3 1.1 26 26 A E H > S+ 0 0 108 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.896 121.0 47.8 -61.3 -42.4 13.5 18.2 4.7 27 27 A E H > S+ 0 0 3 2,-0.2 4,-1.6 1,-0.2 3,-0.4 0.980 117.3 39.2 -62.1 -60.3 10.0 17.2 3.8 28 28 A L H X S+ 0 0 3 -4,-4.2 4,-3.6 1,-0.2 5,-0.5 0.905 107.6 66.7 -56.3 -44.3 10.9 14.5 1.4 29 29 A K H X S+ 0 0 90 -4,-3.3 4,-1.3 -5,-0.4 -1,-0.2 0.901 101.9 47.4 -41.4 -54.3 13.7 13.5 3.7 30 30 A L H >X S+ 0 0 35 -4,-1.8 4,-2.1 -3,-0.4 3,-0.7 0.957 115.6 44.3 -52.9 -57.4 11.1 12.4 6.2 31 31 A L H 3X>S+ 0 0 0 -4,-1.6 4,-2.8 1,-0.3 5,-0.7 0.966 111.9 50.5 -51.1 -62.8 9.1 10.5 3.5 32 32 A L H 3<5S+ 0 0 2 -4,-3.6 8,-0.3 3,-0.2 -1,-0.3 0.737 109.4 59.5 -48.6 -22.6 12.2 8.9 2.0 33 33 A Q H <<5S+ 0 0 102 -4,-1.3 -2,-0.2 -3,-0.7 -1,-0.2 0.989 125.3 11.1 -70.2 -63.9 12.8 8.0 5.7 34 34 A T H <5S+ 0 0 98 -4,-2.1 -2,-0.2 2,-0.2 -3,-0.2 0.925 130.3 54.4 -80.8 -50.3 9.7 6.0 6.4 35 35 A E T <5S- 0 0 31 -4,-2.8 -3,-0.2 -5,-0.3 -2,-0.1 0.943 138.2 -13.7 -47.0 -61.4 8.5 5.7 2.8 36 36 A F < + 0 0 71 -5,-0.7 3,-0.4 1,-0.1 4,-0.4 -0.672 62.4 166.9-151.5 89.4 11.8 4.2 1.6 37 37 A P S > S+ 0 0 67 0, 0.0 4,-0.6 0, 0.0 3,-0.3 0.670 81.0 65.4 -75.0 -18.1 14.8 4.5 3.9 38 38 A S H >> S+ 0 0 84 1,-0.2 4,-0.8 2,-0.2 3,-0.7 0.803 93.4 59.1 -72.4 -30.6 16.6 2.0 1.7 39 39 A L H 34 S+ 0 0 44 -3,-0.4 5,-0.3 -7,-0.3 -1,-0.2 0.715 98.0 61.4 -69.6 -21.0 16.6 4.5 -1.1 40 40 A L H 34 S+ 0 0 52 -4,-0.4 -1,-0.3 -3,-0.3 -2,-0.2 0.771 94.7 61.2 -74.7 -27.3 18.5 6.8 1.2 41 41 A K H << S+ 0 0 174 -3,-0.7 -1,-0.2 -4,-0.6 -2,-0.2 0.819 85.0 105.6 -67.3 -31.6 21.3 4.3 1.3 42 42 A G S < S- 0 0 39 -4,-0.8 -3,-0.0 1,-0.2 0, 0.0 0.154 94.1-101.9 -42.1 166.8 21.7 4.7 -2.5 43 43 A M S S+ 0 0 182 1,-0.1 2,-1.0 2,-0.1 -1,-0.2 0.495 102.0 95.6 -73.9 -3.4 24.7 6.7 -3.8 44 44 A S - 0 0 35 -5,-0.3 -2,-0.1 4,-0.1 -1,-0.1 -0.784 70.0-152.9 -94.0 98.5 22.2 9.6 -4.2 45 45 A T > - 0 0 79 -2,-1.0 4,-3.3 3,-0.1 5,-0.2 -0.042 31.7 -95.3 -62.0 170.5 22.5 11.7 -1.1 46 46 A L H > S+ 0 0 34 2,-0.2 4,-3.6 1,-0.2 3,-0.2 0.968 128.3 43.7 -51.2 -63.7 19.7 13.9 0.1 47 47 A D H > S+ 0 0 88 1,-0.3 4,-3.4 2,-0.2 5,-0.4 0.905 114.0 52.7 -48.1 -48.2 20.9 17.0 -1.7 48 48 A E H > S+ 0 0 99 1,-0.2 4,-2.8 2,-0.2 -1,-0.3 0.906 112.3 44.4 -54.8 -45.7 21.6 14.8 -4.7 49 49 A L H X S+ 0 0 3 -4,-3.3 4,-4.1 -3,-0.2 5,-0.3 0.912 113.1 52.1 -65.5 -44.1 18.1 13.5 -4.6 50 50 A F H X S+ 0 0 55 -4,-3.6 4,-2.2 2,-0.2 -2,-0.2 0.945 117.7 36.2 -56.6 -53.5 16.7 17.0 -4.0 51 51 A E H < S+ 0 0 146 -4,-3.4 -1,-0.2 2,-0.2 -2,-0.2 0.854 118.8 52.9 -68.4 -36.5 18.6 18.4 -7.0 52 52 A E H < S+ 0 0 99 -4,-2.8 -2,-0.2 -5,-0.4 -3,-0.2 0.955 109.2 47.4 -63.1 -53.1 18.0 15.3 -9.0 53 53 A L H < S+ 0 0 9 -4,-4.1 2,-1.2 1,-0.2 -2,-0.2 0.954 103.2 67.0 -52.3 -57.0 14.3 15.2 -8.4 54 54 A D < + 0 0 29 -4,-2.2 -1,-0.2 -5,-0.3 7,-0.1 -0.565 55.1 151.9 -71.5 98.8 14.0 18.9 -9.4 55 55 A K + 0 0 195 -2,-1.2 -1,-0.2 1,-0.0 -2,-0.1 0.225 69.2 54.5-111.0 8.9 14.9 18.7 -13.0 56 56 A N S S- 0 0 84 -3,-0.0 -2,-0.1 0, 0.0 -1,-0.0 0.789 105.1-117.3-105.9 -49.5 12.8 21.8 -13.9 57 57 A G S S+ 0 0 63 3,-0.1 -6,-0.0 -6,-0.0 -3,-0.0 0.769 77.5 114.6 108.7 47.3 14.1 24.4 -11.5 58 58 A D S S- 0 0 98 2,-0.2 3,-0.1 0, 0.0 -4,-0.0 0.646 73.3-128.6-112.5 -30.3 11.2 25.3 -9.3 59 59 A G S S+ 0 0 22 1,-0.3 2,-0.5 -9,-0.1 -5,-0.1 0.172 76.1 108.5 98.2 -15.2 12.5 24.0 -6.0 60 60 A E - 0 0 49 -36,-0.1 2,-0.9 -38,-0.1 -1,-0.3 -0.847 58.9-154.1-100.2 128.1 9.3 22.0 -5.4 61 61 A V - 0 0 0 -38,-1.4 5,-0.2 -2,-0.5 -37,-0.1 -0.414 29.0-176.2 -95.4 55.7 9.5 18.2 -5.7 62 62 A S >> - 0 0 28 -2,-0.9 4,-1.9 -39,-0.2 3,-1.0 0.040 47.7 -91.4 -47.5 162.2 5.8 17.9 -6.6 63 63 A F H 3> S+ 0 0 56 1,-0.3 4,-2.3 2,-0.2 -1,-0.1 0.766 126.2 69.3 -48.8 -27.9 4.4 14.4 -7.0 64 64 A E H 34 S+ 0 0 95 1,-0.2 4,-0.3 2,-0.2 -1,-0.3 0.955 103.8 37.9 -56.2 -55.4 5.4 14.8 -10.6 65 65 A E H X4 S+ 0 0 4 -3,-1.0 3,-1.5 1,-0.2 4,-0.5 0.819 111.0 63.1 -65.9 -31.9 9.1 14.7 -9.9 66 66 A F H >X S+ 0 0 1 -4,-1.9 3,-2.7 1,-0.3 4,-1.6 0.894 89.3 65.8 -59.2 -43.0 8.4 12.1 -7.3 67 67 A Q T 3< S+ 0 0 115 -4,-2.3 4,-0.5 1,-0.3 -1,-0.3 0.712 92.5 65.6 -52.3 -20.3 7.1 9.7 -9.9 68 68 A V T <> S+ 0 0 90 -3,-1.5 4,-0.7 -4,-0.3 3,-0.4 0.819 101.0 47.2 -71.6 -32.0 10.7 9.8 -11.1 69 69 A L H X> S+ 0 0 8 -3,-2.7 4,-3.0 -4,-0.5 3,-0.8 0.857 96.9 69.9 -75.9 -37.6 11.7 8.1 -7.9 70 70 A V H 3< S+ 0 0 55 -4,-1.6 4,-0.3 1,-0.3 -1,-0.2 0.761 95.4 59.1 -50.4 -25.4 9.0 5.5 -8.2 71 71 A K H >> S+ 0 0 136 -4,-0.5 4,-1.9 -3,-0.4 3,-0.6 0.929 108.7 39.9 -69.8 -47.5 11.1 4.3 -11.1 72 72 A K H << S+ 0 0 133 -3,-0.8 -2,-0.2 -4,-0.7 -1,-0.2 0.833 114.0 54.7 -69.7 -33.5 14.2 3.7 -8.9 73 73 A I T 3< S+ 0 0 42 -4,-3.0 -1,-0.3 1,-0.2 -2,-0.2 0.581 108.1 52.9 -74.8 -10.2 11.9 2.3 -6.3 74 74 A S T <4 0 0 94 -3,-0.6 -2,-0.2 -5,-0.3 -1,-0.2 0.861 360.0 360.0 -90.0 -44.5 10.6 -0.0 -9.0 75 75 A Q < 0 0 190 -4,-1.9 -2,-0.2 -5,-0.0 -3,-0.1 0.930 360.0 360.0 -70.0 360.0 14.0 -1.4 -10.1