==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-SEP-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 07-JAN-10 2KSL . COMPND 2 MOLECULE: U1-AGATOXIN-TA1A; . SOURCE 2 ORGANISM_SCIENTIFIC: TEGENARIA AGRESTIS; . AUTHOR M.MOBLI,G.F.KING . 51 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4283.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 60.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 7.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 25 49.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 161 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 80.2 2.1 0.0 -1.2 2 2 A E - 0 0 164 1,-0.1 2,-0.0 2,-0.0 0, 0.0 -0.860 360.0 -97.8-123.0 157.6 3.0 -3.6 -1.9 3 3 A P - 0 0 94 0, 0.0 3,-0.4 0, 0.0 4,-0.1 -0.270 18.2-137.9 -69.7 157.1 3.9 -5.6 -5.1 4 4 A D S > S+ 0 0 56 1,-0.2 4,-0.9 2,-0.1 3,-0.4 0.007 72.5 111.6-104.5 26.2 1.3 -7.8 -6.8 5 5 A E H > + 0 0 143 1,-0.2 4,-1.7 2,-0.2 3,-0.2 0.800 69.8 63.3 -68.4 -29.1 3.7 -10.7 -7.4 6 6 A I H > S+ 0 0 128 -3,-0.4 4,-1.7 1,-0.2 -1,-0.2 0.846 97.0 57.0 -63.8 -34.6 1.8 -12.8 -5.0 7 7 A a H > S+ 0 0 37 -3,-0.4 4,-1.1 1,-0.2 -1,-0.2 0.864 107.1 48.1 -64.8 -36.7 -1.3 -12.7 -7.2 8 8 A R H < S+ 0 0 76 -4,-0.9 -1,-0.2 1,-0.2 -2,-0.2 0.849 113.0 47.5 -72.3 -35.3 0.8 -14.1 -10.1 9 9 A A H < S+ 0 0 83 -4,-1.7 -2,-0.2 1,-0.2 -1,-0.2 0.756 106.9 58.2 -76.4 -25.6 2.2 -16.9 -7.9 10 10 A R H < S+ 0 0 231 -4,-1.7 -1,-0.2 -5,-0.2 -2,-0.2 0.821 107.6 52.7 -73.1 -31.9 -1.3 -17.7 -6.5 11 11 A M S < S- 0 0 37 -4,-1.1 2,-0.1 -5,-0.1 3,-0.0 -0.563 90.7-105.5-101.4 167.4 -2.6 -18.4 -10.0 12 12 A T > - 0 0 92 -2,-0.2 4,-2.3 1,-0.1 5,-0.2 -0.432 31.8-105.5 -88.6 165.5 -1.3 -20.7 -12.8 13 13 A H H > S+ 0 0 182 1,-0.2 4,-1.5 2,-0.2 5,-0.1 0.915 123.0 49.8 -54.7 -46.6 0.5 -19.7 -15.9 14 14 A K H > S+ 0 0 176 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.874 108.0 54.9 -60.9 -38.5 -2.6 -20.4 -18.0 15 15 A E H > S+ 0 0 77 1,-0.2 4,-2.9 2,-0.2 5,-0.3 0.946 104.9 51.2 -60.5 -50.7 -4.7 -18.3 -15.6 16 16 A F H X S+ 0 0 74 -4,-2.3 4,-1.9 1,-0.2 -1,-0.2 0.838 111.2 50.4 -56.2 -34.0 -2.4 -15.2 -16.0 17 17 A N H X S+ 0 0 94 -4,-1.5 4,-2.0 -5,-0.2 -1,-0.2 0.895 112.4 45.4 -71.8 -41.5 -2.8 -15.6 -19.8 18 18 A Y H X S+ 0 0 116 -4,-2.2 4,-2.1 2,-0.2 5,-0.2 0.966 116.1 44.0 -66.4 -54.5 -6.6 -15.9 -19.6 19 19 A K H X S+ 0 0 48 -4,-2.9 4,-2.4 1,-0.2 -2,-0.2 0.941 116.4 47.0 -55.9 -51.3 -7.1 -13.0 -17.3 20 20 A S H X S+ 0 0 37 -4,-1.9 4,-2.0 -5,-0.3 -1,-0.2 0.887 107.6 58.2 -58.9 -40.6 -4.6 -10.8 -19.1 21 21 A N H < S+ 0 0 104 -4,-2.0 4,-0.3 1,-0.2 -1,-0.2 0.926 111.3 40.4 -55.6 -48.3 -6.2 -11.7 -22.4 22 22 A V H >X S+ 0 0 21 -4,-2.1 4,-1.7 1,-0.2 3,-1.4 0.849 107.3 64.6 -70.0 -35.1 -9.6 -10.4 -21.3 23 23 A b H 3X S+ 0 0 1 -4,-2.4 4,-0.7 1,-0.3 3,-0.4 0.914 98.4 53.2 -54.0 -46.8 -8.0 -7.4 -19.6 24 24 A N H 3< S+ 0 0 127 -4,-2.0 -1,-0.3 1,-0.2 -2,-0.2 0.673 109.1 52.9 -63.9 -15.8 -6.7 -6.1 -23.0 25 25 A G H <4 S+ 0 0 36 -3,-1.4 -1,-0.2 -4,-0.3 -2,-0.2 0.805 88.2 74.4 -88.9 -33.0 -10.3 -6.4 -24.1 26 26 A c H < S- 0 0 22 -4,-1.7 2,-0.4 -3,-0.4 -2,-0.2 0.796 107.7-118.0 -49.7 -29.8 -11.9 -4.4 -21.3 27 27 A G < - 0 0 32 -4,-0.7 3,-0.4 1,-0.1 -1,-0.2 -0.989 63.9 -15.5 132.0-137.3 -10.5 -1.3 -23.1 28 28 A D S S+ 0 0 177 -2,-0.4 3,-0.2 1,-0.2 4,-0.1 0.044 112.4 87.3 -94.8 25.2 -7.9 1.3 -22.0 29 29 A Q > + 0 0 93 -6,-0.3 4,-2.6 1,-0.2 3,-0.2 -0.002 44.8 124.6-111.0 26.3 -8.3 0.2 -18.4 30 30 A V H > S+ 0 0 52 -3,-0.4 4,-1.9 1,-0.2 5,-0.3 0.925 73.4 53.1 -50.1 -51.5 -5.7 -2.5 -18.5 31 31 A A H > S+ 0 0 85 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.893 112.1 45.4 -52.2 -44.0 -3.7 -1.0 -15.6 32 32 A A H > S+ 0 0 31 -3,-0.2 4,-1.0 2,-0.2 -1,-0.2 0.860 105.5 61.4 -68.9 -36.4 -6.9 -1.0 -13.5 33 33 A b H <>S+ 0 0 0 -4,-2.6 5,-1.6 1,-0.2 -1,-0.2 0.889 117.5 29.7 -57.3 -41.3 -7.7 -4.5 -14.6 34 34 A E H ><5S+ 0 0 37 -4,-1.9 3,-2.1 3,-0.2 -1,-0.2 0.532 98.5 91.5 -94.9 -9.6 -4.5 -5.8 -13.0 35 35 A A H 3<5S+ 0 0 70 -4,-0.9 -2,-0.2 -5,-0.3 -1,-0.2 0.904 102.3 26.7 -50.5 -47.0 -4.5 -3.0 -10.4 36 36 A E T 3<5S- 0 0 91 -4,-1.0 3,-0.4 -3,-0.2 -1,-0.3 -0.055 125.3 -95.7-107.6 30.2 -6.4 -5.3 -8.0 37 37 A a T < 5S- 0 0 33 -3,-2.1 -3,-0.2 1,-0.3 -2,-0.1 0.944 85.8 -47.6 56.5 51.7 -5.1 -8.5 -9.5 38 38 A F S S- 0 0 11 -2,-0.4 4,-2.8 -7,-0.1 5,-0.2 -0.972 82.0-107.1-154.7 165.0 -12.1 -5.0 -9.4 41 41 A D H > S+ 0 0 134 -2,-0.3 4,-2.6 1,-0.2 5,-0.3 0.844 114.2 64.2 -64.5 -34.1 -15.4 -3.7 -10.9 42 42 A V H > S+ 0 0 33 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.933 114.0 30.3 -54.9 -50.3 -13.5 -2.6 -14.0 43 43 A Y H > S+ 0 0 8 2,-0.2 4,-3.2 -11,-0.2 5,-0.4 0.904 117.5 56.7 -76.7 -43.8 -12.6 -6.1 -14.9 44 44 A T H X S+ 0 0 70 -4,-2.8 4,-1.1 1,-0.2 -2,-0.2 0.832 113.1 43.4 -56.8 -33.2 -15.7 -7.7 -13.4 45 45 A A H X S+ 0 0 54 -4,-2.6 4,-1.5 -5,-0.2 -1,-0.2 0.940 117.8 41.9 -77.9 -51.5 -17.8 -5.4 -15.6 46 46 A c H >< S+ 0 0 24 -4,-1.9 3,-0.6 -5,-0.3 -2,-0.2 0.959 114.8 50.4 -60.5 -53.7 -15.9 -5.8 -18.8 47 47 A H H >< S+ 0 0 56 -4,-3.2 3,-1.7 1,-0.3 -1,-0.2 0.909 111.8 48.3 -51.1 -47.2 -15.4 -9.6 -18.4 48 48 A E H 3< S+ 0 0 154 -4,-1.1 -1,-0.3 -5,-0.4 -2,-0.2 0.793 113.2 48.7 -65.0 -28.2 -19.1 -10.0 -17.8 49 49 A A T << S+ 0 0 74 -4,-1.5 2,-0.6 -3,-0.6 -1,-0.3 0.135 93.2 98.7 -97.4 18.8 -19.8 -7.8 -20.8 50 50 A Q < 0 0 106 -3,-1.7 -24,-0.0 1,-0.1 -28,-0.0 -0.929 360.0 360.0-113.0 115.1 -17.4 -9.9 -22.9 51 51 A K 0 0 252 -2,-0.6 -1,-0.1 0, 0.0 -4,-0.1 0.293 360.0 360.0 -80.0 360.0 -18.8 -12.6 -25.2