==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JUL-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION REGULATION 15-JAN-10 2KT0 . COMPND 2 MOLECULE: HOMEOBOX PROTEIN NANOG; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.C.SAHU,J.L.MARKLEY,CENTER FOR EUKARYOTIC STRUCTURAL GENOMI . 84 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7861.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 43 51.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 6.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 36.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 113 0, 0.0 2,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-175.5 -10.8 13.5 -5.7 2 2 A K - 0 0 132 2,-0.0 42,-0.0 0, 0.0 0, 0.0 -0.971 360.0-163.9-116.9 114.8 -8.4 14.0 -2.8 3 3 A Q - 0 0 115 -2,-0.5 2,-2.4 1,-0.1 3,-0.3 -0.784 4.9-164.6 -98.3 88.8 -4.8 14.4 -3.9 4 4 A P + 0 0 26 0, 0.0 -1,-0.1 0, 0.0 3,-0.0 -0.351 36.4 142.0 -78.7 64.0 -2.8 13.7 -0.6 5 5 A T S S- 0 0 113 -2,-2.4 2,-0.3 3,-0.0 3,-0.1 0.699 78.9 -0.8 -72.6 -19.0 0.5 15.1 -1.8 6 6 A S S S+ 0 0 91 -3,-0.3 0, 0.0 1,-0.2 0, 0.0 -0.861 97.4 71.2-154.2-177.4 0.9 16.5 1.7 7 7 A A + 0 0 81 -2,-0.3 2,-0.2 1,-0.1 -1,-0.2 0.994 59.1 166.9 60.3 79.6 -0.9 16.7 5.1 8 8 A E - 0 0 99 -3,-0.1 2,-1.1 31,-0.0 -1,-0.1 -0.594 48.5 -96.1-111.6 176.1 -0.8 13.2 6.5 9 9 A N - 0 0 68 -2,-0.2 3,-0.3 26,-0.1 2,-0.3 -0.790 45.5-137.2 -95.3 90.2 -1.4 11.7 9.9 10 10 A S S S- 0 0 84 -2,-1.1 26,-0.0 1,-0.2 0, 0.0 -0.302 76.1 -11.0 -56.3 110.6 2.1 11.7 11.2 11 11 A V S S+ 0 0 135 -2,-0.3 -1,-0.2 21,-0.1 3,-0.1 0.988 72.3 168.1 60.3 83.6 2.6 8.3 12.9 12 12 A A - 0 0 40 1,-0.3 2,-0.3 -3,-0.3 -2,-0.1 0.933 54.1 -71.8 -82.9 -66.0 -0.8 6.7 13.2 13 13 A K - 0 0 124 22,-0.0 2,-0.4 0, 0.0 -1,-0.3 -0.944 36.9-115.5-179.1 169.5 0.0 3.2 14.2 14 14 A K - 0 0 105 -2,-0.3 3,-0.0 1,-0.1 17,-0.0 -0.984 1.9-158.2-125.5 139.2 1.5 -0.0 12.9 15 15 A E S S+ 0 0 139 -2,-0.4 2,-0.5 1,-0.1 -1,-0.1 0.797 87.7 56.4 -78.6 -30.7 -0.2 -3.4 12.5 16 16 A D + 0 0 83 1,-0.1 -1,-0.1 2,-0.0 15,-0.0 -0.891 51.7 170.1-106.7 128.5 3.2 -5.1 12.5 17 17 A K + 0 0 176 -2,-0.5 -1,-0.1 2,-0.0 -2,-0.0 -0.218 37.5 126.2-125.1 40.9 5.6 -4.6 15.4 18 18 A V - 0 0 70 3,-0.1 2,-1.2 1,-0.0 3,-0.4 -0.814 54.3-145.2-105.0 90.4 8.1 -7.3 14.4 19 19 A P - 0 0 105 0, 0.0 -2,-0.0 0, 0.0 -1,-0.0 -0.427 65.4 -47.6 -63.7 91.2 11.6 -5.7 14.3 20 20 A V S S+ 0 0 118 -2,-1.2 2,-0.3 1,-0.1 3,-0.1 0.934 84.9 152.8 48.3 88.0 13.3 -7.4 11.4 21 21 A K + 0 0 150 -3,-0.4 -1,-0.1 2,-0.2 -3,-0.1 -0.942 49.4 37.3-138.2 160.5 12.8 -11.2 11.8 22 22 A K S S- 0 0 203 -2,-0.3 -1,-0.1 2,-0.0 -2,-0.1 0.682 111.6 -95.3 70.2 20.8 12.7 -14.2 9.4 23 23 A Q - 0 0 178 -3,-0.1 2,-0.4 2,-0.1 -2,-0.2 -0.147 61.6 -47.1 67.0-165.3 15.4 -12.4 7.3 24 24 A K - 0 0 169 -4,-0.1 3,-0.1 1,-0.1 4,-0.1 -0.847 32.0-146.8-108.7 142.3 14.8 -10.2 4.3 25 25 A T - 0 0 106 -2,-0.4 2,-2.4 2,-0.2 -1,-0.1 -0.013 44.4-115.8 -93.8 30.4 12.5 -11.0 1.4 26 26 A R S S+ 0 0 242 2,-0.0 2,-0.4 0, 0.0 -1,-0.2 -0.480 102.8 51.7 67.8 -74.6 14.8 -9.2 -1.1 27 27 A T S S+ 0 0 119 -2,-2.4 2,-0.3 -3,-0.1 -2,-0.2 -0.747 77.0 174.0 -90.3 139.2 12.1 -6.6 -1.8 28 28 A V - 0 0 101 -2,-0.4 2,-0.4 -4,-0.1 -4,-0.0 -0.967 27.2-133.3-144.1 154.6 10.5 -4.9 1.2 29 29 A F - 0 0 115 -2,-0.3 2,-0.2 3,-0.0 -2,-0.0 -0.886 26.8-126.3-108.5 144.8 8.1 -2.2 2.1 30 30 A S > - 0 0 53 -2,-0.4 4,-2.4 1,-0.1 3,-0.3 -0.570 17.2-121.2 -90.7 154.3 8.8 0.4 4.8 31 31 A S H > S+ 0 0 44 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.747 112.0 66.2 -63.9 -22.7 6.5 1.2 7.7 32 32 A T H > S+ 0 0 96 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.962 107.4 37.0 -61.9 -52.1 6.5 4.7 6.4 33 33 A Q H > S+ 0 0 51 -3,-0.3 4,-3.0 1,-0.2 5,-0.2 0.935 116.0 54.7 -65.1 -45.9 4.6 3.7 3.2 34 34 A L H X S+ 0 0 77 -4,-2.4 4,-2.6 1,-0.2 5,-0.2 0.884 108.1 49.3 -55.2 -42.5 2.5 1.1 5.2 35 35 A C H X S+ 0 0 21 -4,-2.6 4,-2.7 2,-0.2 -1,-0.2 0.912 112.7 46.5 -65.2 -42.9 1.4 3.8 7.6 36 36 A V H X S+ 0 0 41 -4,-1.8 4,-2.7 2,-0.2 5,-0.2 0.906 113.6 49.1 -66.3 -42.3 0.4 6.1 4.8 37 37 A L H X S+ 0 0 20 -4,-3.0 4,-2.2 2,-0.2 -2,-0.2 0.945 114.8 43.8 -60.4 -49.4 -1.4 3.4 3.0 38 38 A N H X S+ 0 0 44 -4,-2.6 4,-1.3 -5,-0.2 -2,-0.2 0.901 114.9 49.6 -66.8 -41.2 -3.3 2.2 6.0 39 39 A D H >X S+ 0 0 7 -4,-2.7 4,-3.0 -5,-0.2 3,-0.7 0.958 112.7 46.1 -60.7 -50.9 -4.2 5.8 7.1 40 40 A R H 3X S+ 0 0 31 -4,-2.7 4,-2.7 1,-0.3 -2,-0.2 0.849 110.6 53.4 -64.4 -35.2 -5.4 6.7 3.6 41 41 A F H 3< S+ 0 0 48 -4,-2.2 -1,-0.3 -5,-0.2 -2,-0.2 0.761 114.8 42.4 -69.4 -26.2 -7.5 3.5 3.4 42 42 A Q H << S+ 0 0 143 -4,-1.3 -2,-0.2 -3,-0.7 -1,-0.2 0.832 119.0 42.1 -86.7 -37.6 -9.0 4.4 6.8 43 43 A R H < S+ 0 0 155 -4,-3.0 -2,-0.2 -5,-0.1 -3,-0.2 0.927 124.6 31.6 -74.2 -46.4 -9.6 8.1 6.1 44 44 A Q S < S- 0 0 33 -4,-2.7 3,-0.1 -5,-0.2 0, 0.0 -0.361 88.0-111.1-100.1-178.6 -10.8 7.6 2.5 45 45 A K S S- 0 0 186 1,-0.3 2,-0.2 -2,-0.1 -1,-0.1 0.962 78.9 -54.7 -76.4 -55.0 -12.7 4.8 0.9 46 46 A Y S S- 0 0 155 -3,-0.0 2,-0.6 -4,-0.0 -1,-0.3 -0.856 70.7 -58.8-164.5-170.4 -9.9 3.4 -1.3 47 47 A L - 0 0 16 -2,-0.2 2,-0.0 -3,-0.1 -6,-0.0 -0.834 51.4-150.1 -93.5 120.9 -7.5 4.5 -4.0 48 48 A S > - 0 0 55 -2,-0.6 4,-1.9 1,-0.1 5,-0.2 -0.221 34.2 -92.3 -78.6 177.2 -9.2 5.9 -7.0 49 49 A L H > S+ 0 0 114 1,-0.2 4,-0.6 2,-0.2 -1,-0.1 0.864 129.6 38.2 -60.8 -39.0 -7.9 5.7 -10.6 50 50 A Q H >> S+ 0 0 83 2,-0.2 4,-2.0 1,-0.2 3,-1.2 0.908 108.7 62.1 -77.3 -42.6 -6.2 9.0 -10.2 51 51 A Q H 3> S+ 0 0 19 1,-0.3 4,-3.0 2,-0.2 5,-0.2 0.820 97.9 57.8 -57.3 -34.8 -5.1 8.5 -6.5 52 52 A M H 3X S+ 0 0 6 -4,-1.9 4,-2.1 2,-0.2 -1,-0.3 0.863 107.5 47.2 -64.3 -34.7 -2.9 5.5 -7.5 53 53 A Q H S+ 0 0 11 -4,-2.1 5,-2.2 1,-0.2 4,-0.4 0.907 108.5 47.0 -53.4 -46.4 3.0 6.5 -7.4 57 57 A N H ><5S+ 0 0 135 -4,-1.9 3,-0.5 -3,-0.2 -1,-0.2 0.875 112.5 50.6 -66.3 -36.4 4.6 10.0 -7.8 58 58 A I H 3<5S+ 0 0 71 -4,-2.1 -2,-0.2 1,-0.2 -1,-0.2 0.920 114.6 40.1 -70.1 -44.9 4.9 10.5 -4.1 59 59 A L T 3<5S- 0 0 51 -4,-2.6 -1,-0.2 -5,-0.2 -2,-0.2 0.351 109.9-119.2 -90.0 7.3 6.6 7.2 -3.2 60 60 A N T < 5S+ 0 0 150 -3,-0.5 -3,-0.2 -4,-0.4 2,-0.1 0.792 73.3 128.8 61.2 31.3 8.8 7.5 -6.4 61 61 A L < - 0 0 87 -5,-2.2 2,-0.3 -6,-0.3 -1,-0.2 -0.429 62.5 -88.7-108.0-178.0 7.2 4.2 -7.6 62 62 A S > - 0 0 60 -2,-0.1 4,-3.0 1,-0.1 3,-0.3 -0.733 18.4-132.9 -99.8 143.8 5.6 3.2 -10.8 63 63 A Y H > S+ 0 0 83 -2,-0.3 4,-2.0 1,-0.2 5,-0.2 0.806 112.7 55.8 -57.6 -31.0 1.9 3.5 -11.7 64 64 A K H > S+ 0 0 133 2,-0.2 4,-1.6 1,-0.2 -1,-0.2 0.872 110.9 43.7 -69.8 -36.8 2.1 -0.1 -12.9 65 65 A Q H > S+ 0 0 108 -3,-0.3 4,-2.4 2,-0.2 -2,-0.2 0.920 113.7 48.7 -75.2 -44.9 3.4 -1.1 -9.4 66 66 A V H X S+ 0 0 11 -4,-3.0 4,-1.8 1,-0.2 -2,-0.2 0.895 113.9 46.9 -65.4 -40.0 0.9 0.9 -7.4 67 67 A K H X S+ 0 0 60 -4,-2.0 4,-2.7 -5,-0.2 5,-0.2 0.933 112.6 49.1 -65.3 -46.2 -2.0 -0.3 -9.4 68 68 A T H X S+ 0 0 67 -4,-1.6 4,-2.1 1,-0.2 -2,-0.2 0.884 109.2 51.7 -64.7 -40.6 -0.9 -4.0 -9.2 69 69 A W H X S+ 0 0 63 -4,-2.4 4,-2.3 2,-0.2 5,-0.2 0.941 112.9 46.1 -59.9 -47.2 -0.4 -3.8 -5.4 70 70 A F H X S+ 0 0 24 -4,-1.8 4,-1.9 1,-0.2 -2,-0.2 0.925 113.5 47.5 -61.8 -47.7 -3.9 -2.4 -4.9 71 71 A Q H X S+ 0 0 86 -4,-2.7 4,-3.2 2,-0.2 -1,-0.2 0.814 110.9 52.7 -67.5 -30.4 -5.6 -4.9 -7.3 72 72 A N H X S+ 0 0 35 -4,-2.1 4,-1.5 2,-0.2 -1,-0.2 0.942 112.4 43.2 -69.9 -47.6 -3.7 -7.8 -5.6 73 73 A Q H < S+ 0 0 55 -4,-2.3 4,-0.3 1,-0.2 -2,-0.2 0.798 117.4 50.7 -65.1 -29.5 -4.8 -6.8 -2.1 74 74 A R H >< S+ 0 0 133 -4,-1.9 3,-1.0 -5,-0.2 4,-0.3 0.949 112.5 42.0 -71.1 -51.1 -8.2 -6.2 -3.7 75 75 A M H >X S+ 0 0 64 -4,-3.2 4,-2.9 1,-0.2 3,-1.0 0.651 94.2 81.7 -77.3 -14.6 -8.6 -9.6 -5.5 76 76 A K T 3< S+ 0 0 86 -4,-1.5 -1,-0.2 1,-0.3 5,-0.2 0.797 86.2 59.6 -61.2 -28.4 -7.2 -11.6 -2.6 77 77 A S T <4 S+ 0 0 100 -3,-1.0 -1,-0.3 -4,-0.3 -2,-0.2 0.804 114.7 34.1 -70.4 -29.2 -10.6 -11.5 -0.9 78 78 A K T <4 S- 0 0 166 -3,-1.0 -2,-0.2 -4,-0.3 -1,-0.1 0.879 142.3 -1.4 -93.0 -45.5 -12.3 -13.2 -3.9 79 79 A R S < S- 0 0 177 -4,-2.9 2,-0.3 1,-0.1 -3,-0.2 0.766 105.2 -79.1-108.9 -78.2 -9.5 -15.6 -5.0 80 80 A W - 0 0 191 -5,-0.3 2,-0.3 -8,-0.1 -1,-0.1 -0.885 41.1 -86.6 173.9 155.9 -6.2 -15.4 -3.1 81 81 A Q - 0 0 103 -2,-0.3 2,-0.4 -5,-0.2 -8,-0.1 -0.636 42.0-165.1 -82.8 135.3 -3.1 -13.3 -2.8 82 82 A K - 0 0 143 -2,-0.3 -6,-0.0 1,-0.1 -2,-0.0 -0.961 22.3-166.0-124.3 138.5 -0.3 -14.2 -5.2 83 83 A N 0 0 154 -2,-0.4 -1,-0.1 -11,-0.0 -11,-0.0 0.869 360.0 360.0 -83.3 -42.8 3.4 -13.2 -5.2 84 84 A N 0 0 200 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 0.995 360.0 360.0 65.7 360.0 4.0 -14.3 -8.7