==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 26-JAN-10 2KTC . COMPND 2 MOLECULE: POTASSIUM CHANNEL TOXIN ALPHA-KTX 9.4; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS TAMULUS; . AUTHOR G.S.KUMAR,S.UPADHYAY,M.K.MATHEW,S.P.SARMA . 34 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2556.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 47.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 14.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 91 0, 0.0 2,-1.1 0, 0.0 3,-0.2 0.000 360.0 360.0 360.0 102.5 2.0 13.3 -5.9 2 2 A S + 0 0 54 1,-0.2 23,-0.1 2,-0.1 22,-0.0 -0.487 360.0 152.2 -67.0 98.9 1.3 10.0 -4.0 3 3 A V >> + 0 0 97 -2,-1.1 3,-4.6 21,-0.3 4,-1.3 0.835 61.6 69.6 -94.4 -42.6 4.7 8.8 -3.1 4 4 A G H 3> S+ 0 0 18 20,-0.3 4,-5.6 1,-0.3 -1,-0.1 0.863 89.8 65.6 -42.1 -43.1 3.8 6.9 0.0 5 5 A a H 34 S+ 0 0 14 1,-0.2 -1,-0.3 2,-0.2 -2,-0.1 0.629 102.5 49.9 -59.7 -8.6 2.1 4.4 -2.3 6 6 A A H <> S+ 0 0 53 -3,-4.6 4,-1.5 2,-0.1 -1,-0.2 0.877 119.2 33.4 -92.1 -49.6 5.7 3.7 -3.5 7 7 A E H X S+ 0 0 96 -4,-1.3 4,-5.2 2,-0.2 -2,-0.2 0.901 110.1 69.2 -70.2 -40.8 7.2 3.2 -0.1 8 8 A b H < S+ 0 0 19 -4,-5.6 -3,-0.2 -5,-0.3 -1,-0.2 0.920 106.1 37.3 -42.1 -61.7 3.9 1.7 1.2 9 9 A P H >4 S+ 0 0 41 0, 0.0 3,-1.7 0, 0.0 -1,-0.2 0.926 118.5 50.9 -60.1 -43.4 4.3 -1.5 -1.0 10 10 A M H 3< S+ 0 0 169 -4,-1.5 -2,-0.2 1,-0.3 -3,-0.2 0.933 109.5 50.4 -58.7 -44.9 8.1 -1.4 -0.4 11 11 A H T 3< S+ 0 0 143 -4,-5.2 2,-0.3 -5,-0.1 -1,-0.3 0.053 91.8 118.3 -82.0 27.9 7.4 -1.1 3.3 12 12 A c < - 0 0 25 -3,-1.7 2,-0.4 -5,-0.2 5,-0.1 -0.714 63.7-124.8 -98.0 145.5 5.0 -4.1 2.9 13 13 A K > - 0 0 122 3,-0.5 3,-2.0 -2,-0.3 -2,-0.1 -0.737 34.9 -89.8 -96.3 140.0 5.6 -7.4 4.8 14 14 A G T 3 S+ 0 0 76 -2,-0.4 -1,-0.1 1,-0.2 0, 0.0 -0.009 110.8 28.2 -43.3 142.2 5.9 -10.8 3.1 15 15 A K T 3 S+ 0 0 180 -3,-0.1 2,-0.3 2,-0.0 -1,-0.2 0.057 120.5 58.1 90.0 -22.3 2.7 -12.8 2.6 16 16 A M < + 0 0 111 -3,-2.0 -3,-0.5 14,-0.0 2,-0.4 -0.819 62.5 147.8-141.7 98.8 0.7 -9.6 2.5 17 17 A A + 0 0 56 -2,-0.3 11,-0.1 -5,-0.1 -2,-0.0 -0.936 7.7 133.8-140.1 116.8 1.5 -6.9 -0.2 18 18 A K - 0 0 57 -2,-0.4 11,-1.4 -10,-0.1 2,-0.3 -0.784 43.8-132.4-161.5 111.0 -0.9 -4.6 -1.9 19 19 A P E -A 28 0A 25 0, 0.0 15,-4.7 0, 0.0 2,-0.4 -0.492 25.1-175.4 -70.1 126.3 -0.4 -0.8 -2.5 20 20 A T E -A 27 0A 2 7,-2.7 7,-3.0 -2,-0.3 2,-0.4 -0.978 2.7-169.3-128.9 119.0 -3.5 1.3 -1.5 21 21 A a E +A 26 0A 27 -2,-0.4 2,-0.4 5,-0.3 5,-0.3 -0.894 7.9 176.6-111.7 139.3 -3.6 5.1 -2.1 22 22 A E E > S-A 25 0A 49 3,-4.9 3,-3.3 -2,-0.4 -2,-0.0 -0.927 72.2 -33.1-143.4 113.2 -6.2 7.5 -0.7 23 23 A N T 3 S- 0 0 139 -2,-0.4 3,-0.1 1,-0.3 -2,-0.0 0.874 127.9 -41.9 41.5 52.0 -6.0 11.3 -1.3 24 24 A E T 3 S+ 0 0 99 1,-0.3 2,-0.4 -22,-0.0 -20,-0.3 0.315 121.3 113.1 80.1 -4.8 -2.2 11.2 -1.3 25 25 A V E < -A 22 0A 77 -3,-3.3 -3,-4.9 -23,-0.1 2,-0.3 -0.790 49.8-164.1 -99.1 138.7 -2.3 8.7 1.7 26 26 A b E +A 21 0A 26 -2,-0.4 2,-0.3 -5,-0.3 -5,-0.3 -0.915 14.3 166.4-126.2 154.3 -1.0 5.2 1.1 27 27 A K E -A 20 0A 69 -7,-3.0 -7,-2.7 -2,-0.3 2,-0.9 -0.980 38.7-115.1-155.7 161.4 -1.3 1.8 2.9 28 28 A c E +A 19 0A 36 -2,-0.3 2,-0.4 -9,-0.2 -15,-0.1 -0.822 57.8 142.4-103.7 92.6 -0.6 -1.9 2.3 29 29 A N > - 0 0 79 -11,-1.4 3,-1.2 -2,-0.9 2,-0.1 -0.996 50.4-114.2-139.7 140.6 -4.1 -3.5 2.5 30 30 A I T 3 S+ 0 0 110 -2,-0.4 3,-0.1 1,-0.2 -12,-0.1 -0.380 96.1 47.4 -68.7 142.5 -6.0 -6.3 0.7 31 31 A G T 3 S+ 0 0 89 -2,-0.1 2,-0.4 1,-0.1 -1,-0.2 0.041 105.3 65.1 112.4 -20.8 -9.0 -5.3 -1.4 32 32 A K < - 0 0 77 -3,-1.2 2,-0.4 -14,-0.1 -3,-0.3 -0.998 55.4-175.2-135.9 130.6 -7.2 -2.4 -3.1 33 33 A K 0 0 145 -2,-0.4 -13,-0.2 -3,-0.1 -3,-0.1 -0.772 360.0 360.0-128.9 88.6 -4.3 -2.7 -5.5 34 34 A D 0 0 85 -15,-4.7 -14,-0.1 -2,-0.4 -2,-0.0 0.130 360.0 360.0 -92.4 360.0 -3.0 0.7 -6.6