==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-AUG-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 05-FEB-10 2KTN . COMPND 2 MOLECULE: LICHENICIDIN VK21 A1; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS LICHENIFORMIS; . AUTHOR K.S.MINEEV,Z.O.SHENKAREV,T.V.OVCHINNIKOVA,A.S.ARSENIEV . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2685.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 10 32.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A I 0 0 184 0, 0.0 22,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-177.1 6.9 9.9 19.3 2 3 A X > + 0 0 27 1,-0.3 4,-1.4 4,-0.1 3,-0.3 0.121 360.0 167.7 116.2 -18.0 3.7 10.0 17.3 3 4 A L T 4 + 0 0 167 1,-0.2 2,-0.7 2,-0.1 -1,-0.3 0.060 57.7 22.5 -30.8 129.1 3.9 6.4 16.0 4 5 A X T 4 S- 0 0 80 1,-0.1 -1,-0.2 0, 0.0 0, 0.0 -0.847 131.8 -0.0 119.0 -96.2 0.6 5.5 14.6 5 6 A X T > S+ 0 0 76 -2,-0.7 4,-0.8 -3,-0.3 -2,-0.1 0.108 99.8 93.3-124.0 24.2 -1.6 8.1 13.4 6 7 A C T >< S+ 0 0 6 -4,-1.4 3,-0.9 2,-0.2 15,-0.2 0.983 96.7 30.2 -76.6 -69.9 0.2 11.4 14.1 7 8 A A T 34 S+ 0 0 33 1,-0.2 3,-0.5 13,-0.2 -1,-0.2 0.477 114.6 70.0 -69.9 -0.2 2.1 12.2 10.9 8 9 A I T 34 S+ 0 0 128 1,-0.2 -1,-0.2 2,-0.1 2,-0.2 0.845 88.6 57.7 -84.7 -37.9 -0.8 10.3 9.2 9 10 A L S << S+ 0 0 62 -3,-0.9 -1,-0.2 -4,-0.8 9,-0.2 -0.049 83.2 164.3 -83.8 34.5 -3.4 13.0 9.9 10 11 A X + 0 0 35 -3,-0.5 8,-0.1 -2,-0.2 -2,-0.1 0.158 10.0 173.2 -44.6 170.4 -1.3 15.5 8.1 11 12 A K - 0 0 53 7,-0.0 4,-0.1 5,-0.0 5,-0.1 -0.693 30.9-111.7 173.9 130.2 -2.8 18.8 6.9 12 13 A P S S- 0 0 99 0, 0.0 3,-0.2 0, 0.0 0, 0.0 -0.352 78.2 -20.6 -69.8 148.4 -1.6 22.1 5.4 13 14 A L S S- 0 0 136 1,-0.2 2,-1.1 2,-0.1 3,-0.1 0.103 114.2 -37.7 44.6-164.9 -1.7 25.3 7.4 14 15 A G S S+ 0 0 74 1,-0.2 -1,-0.2 2,-0.1 -3,-0.0 -0.730 80.3 134.4 -93.9 92.9 -4.1 25.5 10.4 15 16 A N S S- 0 0 128 -2,-1.1 -1,-0.2 -3,-0.2 -2,-0.1 0.103 87.5 -19.0-122.3 18.8 -7.2 23.6 9.4 16 17 A N - 0 0 106 -5,-0.1 -2,-0.1 -3,-0.1 -5,-0.0 -0.249 67.6-129.6-179.5 -80.8 -7.6 21.5 12.6 17 18 A G + 0 0 63 -6,-0.0 -3,-0.1 0, 0.0 -6,-0.0 0.573 44.0 161.6 114.3 17.2 -4.6 21.0 15.0 18 19 A Y - 0 0 136 -9,-0.2 2,-2.2 1,-0.2 -2,-0.1 0.196 64.6 -69.1 -55.0-175.3 -4.7 17.2 15.4 19 20 A L S S+ 0 0 96 -14,-0.1 -1,-0.2 -9,-0.0 -10,-0.1 -0.182 97.8 122.2 -75.7 47.7 -1.7 15.3 16.7 20 21 A C + 0 0 23 -2,-2.2 -13,-0.2 -11,-0.2 3,-0.1 -0.113 19.1 85.4 -95.1-164.8 0.1 16.1 13.4 21 22 A X + 0 0 61 1,-0.3 2,-0.4 -15,-0.2 -1,-0.1 0.875 68.2 127.5 75.0 38.7 3.4 17.9 12.8 22 23 A V > + 0 0 26 -16,-0.1 3,-0.6 4,-0.1 -1,-0.3 -0.969 50.6 7.1-130.5 145.4 5.5 14.7 13.2 23 24 A X G >> S- 0 0 30 -2,-0.4 3,-3.6 1,-0.2 4,-3.3 -0.084 123.5 -20.7 77.0 177.3 8.1 13.0 11.1 24 25 A K G 34 S+ 0 0 135 1,-0.3 -1,-0.2 2,-0.2 5,-0.0 0.730 131.0 73.6 -23.8 -35.5 9.6 14.3 7.9 25 26 A E G <4 S- 0 0 92 -3,-0.6 -1,-0.3 1,-0.2 -2,-0.2 0.913 129.1 -6.3 -49.9 -48.7 6.5 16.5 7.9 26 27 A C T <4 S+ 0 0 73 -3,-3.6 -2,-0.2 1,-0.2 -1,-0.2 0.484 138.9 55.1-123.8 -14.8 7.9 18.6 10.7 27 28 A M >< - 0 0 110 -4,-3.3 3,-0.9 1,-0.1 -1,-0.2 -0.945 55.5-167.8-129.3 112.0 11.1 16.7 11.5 28 29 A P T 3 S+ 0 0 108 0, 0.0 -4,-0.1 0, 0.0 -1,-0.1 0.614 80.3 84.2 -69.8 -12.0 13.6 15.9 8.7 29 30 A S T 3 + 0 0 86 -6,-0.1 2,-0.4 2,-0.0 -2,-0.0 0.325 64.9 121.7 -74.1 10.6 15.3 13.5 11.1 30 31 A C < 0 0 47 -3,-0.9 -8,-0.0 -8,-0.0 0, 0.0 -0.633 360.0 360.0 -80.0 127.1 12.7 10.9 9.9 31 32 A N 0 0 205 -2,-0.4 -7,-0.1 0, 0.0 -2,-0.0 -0.798 360.0 360.0-144.0 360.0 14.2 7.8 8.4