==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-AUG-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 05-FEB-10 2KTO . COMPND 2 MOLECULE: LCHB; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS LICHENIFORMIS; . AUTHOR K.S.MINEEV,Z.O.SHENKAREV,T.V.OVCHINNIKOVA,A.S.ARSENIEV . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2859.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 61.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 35.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A X 0 0 162 0, 0.0 2,-3.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 104.5 -24.3 6.7 17.3 2 3 A P + 0 0 126 0, 0.0 2,-1.8 0, 0.0 3,-0.1 -0.255 360.0 155.5 -69.7 57.2 -21.1 7.1 19.4 3 4 A A > + 0 0 61 -2,-3.2 3,-0.5 1,-0.2 0, 0.0 -0.451 18.4 178.5 -85.2 64.8 -18.9 6.8 16.4 4 5 A X T 3 - 0 0 101 -2,-1.8 -1,-0.2 1,-0.2 2,-0.1 0.837 59.6 -20.1 -31.4 -98.4 -16.1 8.7 17.9 5 6 A X T 3 S- 0 0 123 -3,-0.1 -1,-0.2 1,-0.1 -2,-0.0 -0.349 116.7 -49.2-123.5 55.8 -13.2 8.9 15.6 6 7 A X S < S+ 0 0 48 -3,-0.5 -2,-0.1 -2,-0.1 -1,-0.1 0.971 82.5 159.8 81.2 68.2 -13.4 6.2 13.0 7 8 A X > - 0 0 51 3,-0.1 4,-1.9 4,-0.0 5,-0.1 0.499 60.2 -26.0 -87.9-127.5 -14.0 3.1 14.9 8 9 A W H > S+ 0 0 203 1,-0.2 4,-2.4 2,-0.2 5,-0.3 0.921 134.3 57.6 -54.9 -47.7 -15.4 -0.3 14.1 9 10 A T H > S+ 0 0 106 1,-0.2 4,-2.3 2,-0.2 5,-0.3 0.943 107.3 45.8 -48.5 -58.3 -17.3 1.3 11.2 10 11 A C H > S+ 0 0 67 2,-0.2 4,-1.7 1,-0.2 -1,-0.2 0.858 114.6 52.6 -54.9 -37.2 -14.2 2.7 9.5 11 12 A I H X S+ 0 0 77 -4,-1.9 4,-2.9 2,-0.2 3,-0.3 0.999 111.8 39.3 -62.6 -70.4 -12.5 -0.7 10.1 12 13 A X H X S+ 0 0 65 -4,-2.4 4,-1.8 1,-0.2 -2,-0.2 0.817 114.9 52.2 -50.4 -40.8 -15.0 -3.0 8.6 13 14 A A H X S+ 0 0 71 -4,-2.3 4,-0.7 -5,-0.3 -1,-0.2 0.913 115.6 40.5 -65.0 -44.0 -15.8 -0.8 5.6 14 15 A G H >X S+ 0 0 45 -4,-1.7 4,-1.6 -5,-0.3 3,-1.0 0.935 110.7 56.5 -70.9 -47.7 -12.2 -0.3 4.6 15 16 A V H 3X S+ 0 0 87 -4,-2.9 4,-2.3 1,-0.3 5,-0.2 0.900 100.9 60.6 -50.1 -46.5 -11.2 -3.9 5.2 16 17 A X H 3< S+ 0 0 76 -4,-1.8 -1,-0.3 -5,-0.3 -2,-0.2 0.811 103.4 47.0 -52.9 -38.5 -13.8 -5.1 2.9 17 18 A V H XX S+ 0 0 97 -3,-1.0 4,-1.2 -4,-0.7 3,-1.2 0.913 111.3 50.6 -72.0 -44.5 -12.5 -3.3 -0.1 18 19 A X H >X S+ 0 0 29 -4,-1.6 3,-0.6 1,-0.3 4,-0.6 0.951 107.7 51.5 -58.7 -52.7 -8.8 -4.4 0.3 19 20 A A H 3< S+ 0 0 33 -4,-2.3 -1,-0.3 1,-0.2 -2,-0.2 0.513 104.0 65.9 -64.1 -2.0 -9.7 -8.1 0.8 20 21 A S H <4 S- 0 0 89 -3,-1.2 -1,-0.2 -5,-0.2 -2,-0.2 0.897 131.0 -13.2 -85.9 -47.2 -11.6 -7.6 -2.5 21 22 A L H << S+ 0 0 145 -4,-1.2 4,-0.4 -3,-0.6 5,-0.2 0.671 96.5 118.3-121.6 -49.0 -8.7 -6.9 -4.8 22 23 A C S >< S- 0 0 49 -4,-0.6 3,-1.6 -5,-0.4 4,-0.1 0.135 81.5 -93.0 -26.7 123.9 -5.6 -6.2 -2.7 23 24 A P T 3 S+ 0 0 133 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 -0.142 113.3 30.3 -48.0 134.5 -3.1 -8.9 -3.5 24 25 A X T 3 S+ 0 0 88 -3,-0.2 5,-0.3 -5,-0.0 -2,-0.1 0.401 88.9 112.1 93.7 -1.3 -3.2 -11.9 -1.2 25 26 A X S < S+ 0 0 22 -3,-1.6 6,-0.2 -4,-0.4 5,-0.1 0.786 81.0 32.0 -75.6 -30.1 -6.9 -11.4 -0.7 26 27 A K S S+ 0 0 178 3,-0.2 2,-1.7 -5,-0.2 -1,-0.2 0.339 89.5 103.0-107.1 2.9 -8.2 -14.4 -2.5 27 28 A C S S- 0 0 76 1,-0.2 -1,-0.1 -3,-0.1 -2,-0.0 -0.409 122.5 -50.8 -85.3 61.1 -5.3 -16.7 -1.6 28 29 A X S S+ 0 0 96 -2,-1.7 -1,-0.2 -3,-0.0 -2,-0.1 0.137 123.5 102.7 94.0 -19.6 -7.1 -18.5 1.1 29 30 A S S S- 0 0 70 -5,-0.3 -3,-0.2 1,-0.1 -4,-0.1 0.855 111.5 -12.5 -63.4 -35.6 -8.2 -15.2 2.7 30 31 A R 0 0 188 -5,-0.1 -4,-0.2 -10,-0.0 -1,-0.1 0.564 360.0 360.0-132.5 -43.0 -11.7 -15.6 1.2 31 32 A C 0 0 97 -6,-0.2 -5,-0.1 -5,-0.1 -4,-0.0 0.782 360.0 360.0 34.1 360.0 -11.6 -18.4 -1.3