==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIVIRAL PROTEIN 18-FEB-10 2KUK . COMPND 2 MOLECULE: LEAF CYCLOTIDE 2; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA HEDERACEA; . AUTHOR N.L.DALY,B.CHEN,P.NGUYENCONG,D.J.CRAIK . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2123.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 12 0, 0.0 29,-0.2 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 -44.6 5.1 1.9 -2.8 2 2 A G + 0 0 74 1,-0.4 2,-0.1 21,-0.4 22,-0.1 0.170 360.0 110.0 92.2 -17.1 3.8 1.6 -6.3 3 3 A E - 0 0 48 20,-0.1 20,-1.6 9,-0.0 -1,-0.4 -0.449 60.0-136.7 -89.1 163.8 2.0 -1.6 -5.3 4 4 A T B -A 22 0A 72 18,-0.2 7,-0.3 -2,-0.1 18,-0.3 -0.883 8.6-162.7-121.2 150.5 -1.7 -2.2 -4.9 5 5 A b > + 0 0 0 16,-1.4 3,-2.6 -2,-0.3 17,-0.2 -0.486 23.6 157.5-132.4 64.9 -3.6 -4.0 -2.2 6 6 A F T 3 S+ 0 0 135 1,-0.3 -1,-0.1 15,-0.3 4,-0.1 0.792 82.9 53.9 -57.8 -27.0 -7.1 -4.8 -3.5 7 7 A T T 3 S- 0 0 96 2,-0.4 -1,-0.3 -3,-0.1 3,-0.1 0.326 122.8-108.1 -88.9 5.8 -7.1 -7.6 -1.0 8 8 A G S < S+ 0 0 40 -3,-2.6 2,-0.3 1,-0.2 9,-0.2 0.812 92.3 98.1 70.3 30.0 -6.2 -5.2 1.8 9 9 A T - 0 0 81 7,-0.1 -2,-0.4 12,-0.0 2,-0.3 -0.978 69.7-129.7-150.4 132.3 -2.8 -6.7 2.0 10 10 A c - 0 0 35 -2,-0.3 -5,-0.1 5,-0.2 7,-0.1 -0.610 2.8-156.7 -87.1 144.9 0.5 -5.6 0.5 11 11 A Y S S+ 0 0 183 -7,-0.3 2,-0.4 -2,-0.3 -1,-0.1 0.701 80.2 63.3 -88.6 -25.2 2.6 -7.9 -1.5 12 12 A T S S- 0 0 55 1,-0.1 3,-0.5 2,-0.0 -2,-0.1 -0.821 86.8-119.1-105.1 142.3 5.7 -5.9 -0.8 13 13 A N S S+ 0 0 153 -2,-0.4 3,-0.1 1,-0.2 -2,-0.1 -0.209 92.1 45.1 -72.0 166.6 7.2 -5.3 2.6 14 14 A G S S+ 0 0 43 1,-0.2 12,-0.5 -4,-0.1 2,-0.3 0.689 100.2 93.2 71.0 19.6 7.6 -1.9 4.2 15 15 A a - 0 0 23 -3,-0.5 2,-0.3 10,-0.2 -5,-0.2 -0.980 54.5-161.0-142.4 153.8 4.1 -1.0 3.1 16 16 A T B -B 24 0B 68 8,-1.3 8,-2.7 -2,-0.3 2,-2.1 -0.959 32.6-112.4-135.1 149.5 0.6 -1.1 4.5 17 17 A b + 0 0 28 -2,-0.3 3,-0.4 6,-0.2 6,-0.2 -0.415 67.8 130.9 -81.0 64.4 -2.8 -1.0 2.9 18 18 A D S S+ 0 0 105 -2,-2.1 2,-1.4 1,-0.2 -1,-0.2 0.971 71.5 38.3 -80.1 -61.6 -3.7 2.4 4.3 19 19 A P S > S- 0 0 51 0, 0.0 3,-1.3 0, 0.0 -1,-0.2 -0.478 110.5-119.5 -90.7 65.6 -5.0 4.2 1.1 20 20 A W T 3 S+ 0 0 153 -2,-1.4 -14,-0.1 -3,-0.4 3,-0.1 -0.104 94.9 24.9 -47.8 139.9 -6.8 1.2 -0.4 21 21 A P T 3 S+ 0 0 36 0, 0.0 -16,-1.4 0, 0.0 -1,-0.4 -0.679 121.8 68.5 -94.4 50.8 -6.3 -0.1 -2.9 22 22 A V B < S-A 4 0A 47 -3,-1.3 2,-0.3 -18,-0.3 -18,-0.2 -0.930 72.6-123.8-126.5 149.2 -2.8 1.3 -2.5 23 23 A c - 0 0 0 -20,-1.6 2,-0.5 -2,-0.3 -21,-0.4 -0.636 16.2-142.8 -90.8 148.7 0.1 0.6 -0.2 24 24 A T B -B 16 0B 8 -8,-2.7 -8,-1.3 -2,-0.3 2,-0.8 -0.951 4.4-153.3-115.7 121.7 1.9 3.2 2.0 25 25 A R B > S-C 28 0C 85 3,-3.6 3,-1.0 -2,-0.5 5,-0.2 -0.846 85.7 -19.6 -95.9 108.8 5.6 3.0 2.5 26 26 A N T 3 S- 0 0 156 -2,-0.8 -1,-0.2 -12,-0.5 -11,-0.1 0.842 132.7 -48.7 60.1 36.2 6.4 4.7 5.9 27 27 A G T 3 S+ 0 0 54 -3,-0.4 -1,-0.3 1,-0.2 -2,-0.1 0.583 121.9 106.4 81.6 11.5 3.0 6.4 5.6 28 28 A L B < S-C 25 0C 96 -3,-1.0 -3,-3.6 1,-0.0 2,-2.5 -0.981 75.4-127.9-126.0 133.3 3.6 7.6 2.1 29 29 A P 0 0 90 0, 0.0 -27,-0.2 0, 0.0 -5,-0.2 -0.123 360.0 360.0 -70.9 45.4 1.9 6.1 -1.1 30 30 A V 0 0 96 -2,-2.5 -6,-0.1 -5,-0.2 -4,-0.0 -0.085 360.0 360.0-105.2 360.0 5.3 5.7 -2.7