==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-FEB-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 27-FEB-10 2KUS . COMPND 2 MOLECULE: SM-AMP-1.1A; . SOURCE 2 ORGANISM_SCIENTIFIC: STELLARIA MEDIA; . AUTHOR T.N.BOZIN,E.V.BOCHAROV,V.A.SOBOL,A.A.VASSILEVSKI,A.A.ARSENIE . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2690.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 45.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 79 0, 0.0 6,-0.1 0, 0.0 11,-0.1 0.000 360.0 360.0 360.0 133.4 2.1 0.0 -1.2 2 2 A G > - 0 0 12 4,-0.6 3,-1.7 1,-0.1 9,-0.0 0.046 360.0 -98.8 -53.4 170.7 5.7 -1.1 -1.5 3 3 A P T 3 S+ 0 0 131 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.617 123.5 54.5 -75.0 -12.6 8.5 1.5 -1.1 4 4 A N T 3 S- 0 0 122 2,-0.0 22,-0.1 0, 0.0 -2,-0.1 0.404 125.8 -97.9 -97.5 -0.2 8.9 1.8 -4.8 5 5 A G < + 0 0 10 -3,-1.7 21,-2.5 1,-0.2 2,-0.2 0.770 58.4 177.9 88.5 28.7 5.2 2.6 -5.4 6 6 A Q B -A 25 0A 39 19,-0.2 -4,-0.6 14,-0.1 2,-0.3 -0.475 6.5-168.2 -68.8 129.9 4.2 -0.9 -6.3 7 7 A a + 0 0 15 17,-2.3 6,-0.2 -2,-0.2 7,-0.1 -0.924 35.2 49.9-122.6 146.9 0.4 -1.2 -6.9 8 8 A G B >> S+B 12 0B 28 4,-2.8 4,-2.3 -2,-0.3 3,-2.1 -0.879 89.3 10.5 125.6-158.7 -1.8 -4.2 -7.3 9 9 A P T 34 S+ 0 0 145 0, 0.0 -2,-0.0 0, 0.0 4,-0.0 -0.283 131.6 4.5 -75.0 84.7 -2.7 -7.5 -5.7 10 10 A G T 34 S+ 0 0 76 -2,-1.9 -3,-0.0 0, 0.0 0, 0.0 0.236 127.2 56.4 135.1 -10.9 -1.0 -7.4 -2.3 11 11 A W T <4 S- 0 0 146 -3,-2.1 2,-0.2 1,-0.2 -4,-0.1 0.667 95.5-129.8-114.9 -33.1 0.5 -3.9 -2.1 12 12 A G B < -B 8 0B 39 -4,-2.3 -4,-2.8 -11,-0.1 -1,-0.2 -0.665 29.9 -56.0 113.0-169.8 -2.5 -1.7 -2.7 13 13 A G - 0 0 51 -6,-0.2 2,-0.2 -2,-0.2 13,-0.1 -0.132 56.2 -86.5 -97.3-164.1 -3.4 1.2 -5.0 14 14 A b - 0 0 37 4,-0.2 -1,-0.1 1,-0.2 6,-0.1 -0.647 44.5 -92.2-105.5 163.9 -1.8 4.6 -5.6 15 15 A R > - 0 0 177 -2,-0.2 3,-1.1 4,-0.1 -1,-0.2 -0.104 46.5 -94.4 -66.5 169.7 -2.3 7.9 -3.9 16 16 A G T 3 S+ 0 0 85 1,-0.3 -1,-0.1 3,-0.0 -2,-0.1 0.920 130.0 37.9 -52.0 -49.7 -4.8 10.5 -5.0 17 17 A G T 3 S+ 0 0 61 11,-0.0 -1,-0.3 2,-0.0 2,-0.3 0.482 113.9 74.6 -81.8 -2.0 -2.3 12.3 -7.1 18 18 A L < - 0 0 48 -3,-1.1 2,-0.3 10,-0.1 10,-0.2 -0.735 61.6-166.2-110.0 159.7 -0.7 9.0 -8.1 19 19 A c E -C 27 0C 29 8,-1.8 8,-1.9 -2,-0.3 2,-0.5 -0.991 31.4 -98.7-145.1 150.8 -1.9 6.3 -10.5 20 20 A a E -C 26 0C 56 -2,-0.3 6,-0.2 6,-0.2 15,-0.1 -0.566 42.4-148.4 -72.6 118.7 -1.0 2.7 -11.3 21 21 A S > - 0 0 13 4,-1.7 3,-1.8 -2,-0.5 11,-0.1 -0.221 30.7 -98.5 -80.3 174.1 1.3 2.6 -14.4 22 22 A Q T 3 S+ 0 0 142 1,-0.3 -1,-0.1 2,-0.1 10,-0.1 0.610 126.6 54.2 -68.6 -10.8 1.5 -0.1 -17.0 23 23 A Y T 3 S- 0 0 167 2,-0.3 -1,-0.3 0, 0.0 3,-0.1 0.252 122.1-105.8-105.3 9.5 4.5 -1.4 -15.1 24 24 A G S < S+ 0 0 23 -3,-1.8 -17,-2.3 1,-0.3 2,-0.5 0.645 82.2 128.8 75.6 14.0 2.7 -1.6 -11.8 25 25 A Y B -A 6 0A 130 -19,-0.2 -4,-1.7 -11,-0.0 -1,-0.3 -0.891 61.4-120.0-107.8 131.3 4.5 1.5 -10.6 26 26 A b E +C 20 0C 24 -21,-2.5 2,-0.3 -2,-0.5 -6,-0.2 -0.391 48.3 145.3 -67.1 140.4 2.7 4.5 -9.1 27 27 A G E -C 19 0C 11 -8,-1.9 -8,-1.8 -12,-0.1 2,-0.2 -0.987 40.3-111.5-167.9 166.7 3.2 7.7 -10.9 28 28 A S + 0 0 83 -2,-0.3 3,-0.2 -10,-0.2 -10,-0.1 -0.553 62.7 62.7-103.7 170.2 1.7 11.0 -12.0 29 29 A G S >> S- 0 0 36 -12,-0.2 4,-2.2 -2,-0.2 3,-0.9 -0.245 90.3 -78.0 103.3 166.2 0.7 12.4 -15.4 30 30 A P H 3> S+ 0 0 102 0, 0.0 4,-1.2 0, 0.0 -1,-0.1 0.687 126.6 64.1 -74.9 -19.6 -1.8 11.3 -18.2 31 31 A K H 34 S+ 0 0 173 1,-0.2 -2,-0.1 -3,-0.2 -3,-0.0 0.546 115.2 30.5 -79.2 -7.3 0.6 8.6 -19.2 32 32 A Y H <4 S+ 0 0 90 -3,-0.9 3,-0.3 -11,-0.1 -1,-0.2 0.630 128.4 37.2-119.3 -31.8 0.1 7.0 -15.8 33 33 A c H < S+ 0 0 55 -4,-2.2 2,-1.3 1,-0.2 -2,-0.1 0.835 111.7 58.1 -90.3 -39.2 -3.4 8.0 -14.9 34 34 A A < 0 0 78 -4,-1.2 -1,-0.2 -5,-0.3 -13,-0.0 -0.420 360.0 360.0 -90.5 59.8 -4.9 7.7 -18.4 35 35 A H 0 0 177 -2,-1.3 -1,-0.2 -3,-0.3 -2,-0.1 0.745 360.0 360.0 -72.3 360.0 -4.0 4.0 -18.9