==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-APR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 01-MAR-10 2KUX . COMPND 2 MOLECULE: KALATA-B5; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR K.ROSENGREN,D.J.CRAIK . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2251.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 50 0, 0.0 29,-0.3 0, 0.0 19,-0.0 0.000 360.0 360.0 360.0 -37.7 5.3 9.3 -1.5 2 2 A T E -A 29 0A 89 27,-2.1 27,-3.0 2,-0.0 25,-0.0 -0.836 360.0-119.5 -98.8 113.2 5.7 6.9 -4.4 3 3 A P E -A 28 0A 77 0, 0.0 25,-0.3 0, 0.0 24,-0.1 -0.178 12.7-150.2 -49.5 129.0 2.8 4.4 -4.8 4 4 A a E - 0 0 38 23,-2.4 24,-0.1 2,-0.3 3,-0.1 0.193 41.9-109.9 -88.5 16.5 4.0 0.8 -4.4 5 5 A G E S+ 0 0 80 22,-0.3 2,-0.3 1,-0.2 23,-0.1 0.833 86.5 112.6 58.7 32.6 1.3 -0.5 -6.7 6 6 A E E -A 27 0A 29 21,-0.7 21,-2.2 7,-0.0 2,-0.3 -0.979 46.3-167.7-136.2 145.8 -0.3 -2.1 -3.7 7 7 A S E -A 26 0A 59 -2,-0.3 4,-0.3 19,-0.3 3,-0.3 -0.973 24.5-148.7-137.5 152.0 -3.5 -1.4 -1.9 8 8 A b + 0 0 45 17,-1.4 18,-0.2 -2,-0.3 17,-0.1 -0.215 62.3 118.1-109.5 39.5 -5.2 -2.4 1.4 9 9 A V S S- 0 0 84 16,-0.4 -1,-0.2 2,-0.1 17,-0.1 0.893 98.5 -1.6 -72.0 -41.6 -8.7 -2.2 0.1 10 10 A Y S S+ 0 0 222 1,-0.4 -2,-0.1 -3,-0.3 -1,-0.0 0.718 139.2 24.6-115.1 -48.0 -9.5 -5.9 0.7 11 11 A I S S- 0 0 112 -4,-0.3 -1,-0.4 1,-0.0 -2,-0.1 -0.885 88.4 -96.6-122.2 153.3 -6.3 -7.3 2.0 12 12 A P - 0 0 104 0, 0.0 2,-0.3 0, 0.0 -5,-0.1 -0.260 50.6 -89.2 -66.3 154.4 -3.3 -5.7 3.9 13 13 A c - 0 0 26 1,-0.2 -5,-0.1 -7,-0.1 4,-0.1 -0.474 37.1-176.6 -68.0 128.2 -0.2 -4.6 2.0 14 14 A I S > S+ 0 0 126 -2,-0.3 3,-1.0 2,-0.1 -1,-0.2 0.863 88.6 42.3 -90.1 -44.4 2.4 -7.4 1.8 15 15 A S G > S+ 0 0 58 1,-0.2 3,-2.4 2,-0.1 5,-0.4 0.729 94.5 85.5 -72.5 -23.7 5.0 -5.3 0.0 16 16 A G G > + 0 0 11 1,-0.3 3,-2.3 2,-0.2 -1,-0.2 0.667 66.5 83.0 -52.6 -19.3 4.2 -2.5 2.4 17 17 A V G < S+ 0 0 126 -3,-1.0 -1,-0.3 1,-0.3 -2,-0.1 0.698 78.3 68.6 -60.5 -19.0 6.6 -4.0 4.9 18 18 A I G < S- 0 0 116 -3,-2.4 -1,-0.3 -4,-0.0 -2,-0.2 0.476 137.7 -74.1 -79.8 -1.7 9.4 -2.2 3.0 19 19 A G S < S+ 0 0 30 -3,-2.3 11,-0.4 1,-0.3 2,-0.2 0.143 87.5 141.9 130.9 -19.4 8.0 1.1 4.2 20 20 A a - 0 0 10 -5,-0.4 2,-0.4 9,-0.2 -1,-0.3 -0.362 35.1-158.1 -58.6 121.9 4.9 1.5 2.1 21 21 A S E -B 28 0A 67 7,-2.8 7,-3.1 -2,-0.2 2,-0.9 -0.875 21.1-117.1-105.8 132.9 2.2 3.0 4.2 22 22 A b E -B 27 0A 51 -2,-0.4 2,-0.6 5,-0.3 5,-0.3 -0.591 35.2-176.8 -75.0 109.0 -1.4 2.6 3.1 23 23 A T E > S-B 26 0A 81 3,-3.3 3,-1.7 -2,-0.9 -15,-0.1 -0.933 71.5 -15.4-109.4 118.3 -2.8 6.0 2.3 24 24 A D T 3 S- 0 0 121 -2,-0.6 -1,-0.2 1,-0.3 3,-0.1 0.929 132.3 -48.9 52.1 52.4 -6.5 6.1 1.4 25 25 A K T 3 S+ 0 0 99 -3,-0.3 -17,-1.4 1,-0.1 2,-0.4 0.468 126.4 97.6 69.8 3.5 -6.6 2.3 0.9 26 26 A V E < S-AB 7 23A 48 -3,-1.7 -3,-3.3 -19,-0.3 2,-0.4 -0.977 72.5-129.9-127.3 124.1 -3.4 2.5 -1.3 27 27 A c E -AB 6 22A 2 -21,-2.2 -23,-2.4 -2,-0.4 -21,-0.7 -0.563 26.3-170.3 -75.5 124.9 0.1 1.8 -0.1 28 28 A Y E -AB 3 21A 86 -7,-3.1 -7,-2.8 -2,-0.4 2,-1.4 -0.892 26.9-128.1-114.7 144.9 2.6 4.6 -0.9 29 29 A L E A 2 0A 60 -27,-3.0 -27,-2.1 -2,-0.4 -9,-0.2 -0.687 360.0 360.0 -92.9 81.3 6.4 4.4 -0.5 30 30 A N 0 0 144 -2,-1.4 -1,-0.2 -11,-0.4 -10,-0.1 0.750 360.0 360.0 50.5 360.0 6.8 7.6 1.5