==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=15-MAY-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 01-MAR-10 2KUY . COMPND 2 MOLECULE: PREBACTERIOCIN GLYCOCIN F; . SOURCE 2 ORGANISM_SCIENTIFIC: LACTOBACILLUS PLANTARUM; . AUTHOR H.VENUGOPAL,P.EDWARDS,M.SCHWALBE,J.CLARIDGE,J.STEPPER,M.PATC . 43 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4526.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 46.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 4.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 9.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 27.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 4.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 236 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 143.6 -8.6 -16.7 -3.8 2 2 A P - 0 0 109 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.187 360.0-161.1 -49.1 177.0 -9.8 -13.8 -1.5 3 3 A A + 0 0 42 2,-0.1 0, 0.0 3,-0.0 0, 0.0 -0.375 43.4 120.9-168.7 78.7 -9.9 -10.2 -2.8 4 4 A W > + 0 0 163 3,-0.1 4,-1.9 2,-0.1 5,-0.1 0.624 68.9 63.5-114.7 -26.5 -10.1 -7.5 -0.2 5 5 A a H >> S+ 0 0 20 2,-0.2 4,-1.2 1,-0.2 3,-1.1 0.983 113.4 26.6 -62.5 -84.3 -7.0 -5.5 -1.0 6 6 A W H 3> S+ 0 0 157 1,-0.3 4,-3.5 2,-0.2 3,-0.2 0.827 118.6 64.8 -49.8 -32.5 -7.4 -4.2 -4.5 7 7 A Y H 3> S+ 0 0 147 1,-0.3 4,-1.8 2,-0.2 -1,-0.3 0.935 98.0 52.0 -56.5 -47.9 -11.2 -4.4 -3.7 8 8 A T H << S+ 0 0 28 -4,-1.9 4,-0.5 -3,-1.1 -1,-0.3 0.834 115.2 43.5 -57.2 -33.7 -10.8 -1.7 -1.1 9 9 A L H >X S+ 0 0 38 -4,-1.2 4,-1.5 -3,-0.2 3,-0.6 0.869 103.8 63.8 -80.1 -40.3 -9.0 0.4 -3.7 10 10 A A H 3< S+ 0 0 64 -4,-3.5 -2,-0.2 1,-0.3 -3,-0.2 0.919 105.1 45.7 -49.4 -50.9 -11.5 -0.4 -6.5 11 11 A M T 3< S+ 0 0 183 -4,-1.8 -1,-0.3 1,-0.2 -2,-0.2 0.768 105.2 67.3 -65.2 -25.3 -14.3 1.4 -4.6 12 12 A b T <4 S- 0 0 43 -3,-0.6 2,-0.5 -4,-0.5 -2,-0.2 0.991 76.0-169.8 -58.3 -67.1 -11.9 4.2 -3.9 13 13 A G < - 0 0 68 -4,-1.5 -1,-0.2 1,-0.1 -2,-0.1 -0.501 69.4 -21.8 108.8 -63.2 -11.5 5.5 -7.5 14 14 A A S S+ 0 0 94 -2,-0.5 2,-0.2 -5,-0.0 -1,-0.1 0.050 89.1 142.3-175.4 44.4 -8.6 8.0 -7.1 15 15 A G - 0 0 41 -6,-0.2 3,-0.1 1,-0.1 -2,-0.1 -0.657 31.3-170.2 -97.8 154.2 -8.3 9.1 -3.5 16 16 A Y S S+ 0 0 203 -2,-0.2 -1,-0.1 1,-0.2 2,-0.1 0.137 81.6 22.8-125.4 16.8 -5.1 9.8 -1.5 17 17 A D S S+ 0 0 122 0, 0.0 -1,-0.2 0, 0.0 0, 0.0 -0.325 77.0 108.7 176.2 92.2 -6.6 10.2 2.0 18 18 A S S S- 0 0 106 -3,-0.1 -2,-0.0 -2,-0.1 -6,-0.0 0.447 72.9 -91.7-132.7 -79.4 -9.9 8.7 3.1 19 19 A G S > S+ 0 0 42 0, 0.0 4,-0.9 0, 0.0 5,-0.2 -0.028 103.8 35.5-169.1 -76.2 -10.0 5.8 5.5 20 20 A T H >>S+ 0 0 77 2,-0.2 4,-3.4 3,-0.2 5,-0.6 0.960 120.7 46.1 -64.0 -53.9 -10.1 2.2 4.3 21 21 A b H >>S+ 0 0 13 1,-0.2 4,-2.8 -13,-0.2 5,-0.8 0.976 110.7 49.6 -52.7 -67.1 -7.9 2.7 1.2 22 22 A D H 45S+ 0 0 81 3,-0.2 4,-0.3 1,-0.2 -1,-0.2 0.761 124.8 35.0 -45.6 -27.6 -5.2 4.8 2.9 23 23 A Y H X5S+ 0 0 150 -4,-0.9 4,-2.7 -3,-0.4 5,-0.3 0.918 124.9 34.3 -91.6 -69.8 -5.1 2.0 5.5 24 24 A M H X5S+ 0 0 71 -4,-3.4 4,-2.5 -5,-0.2 -3,-0.2 0.898 121.6 51.3 -53.5 -44.6 -5.8 -1.3 3.8 25 25 A Y H X> S- 0 0 102 3,-0.2 3,-0.9 1,-0.1 2,-0.8 -0.582 78.1 -80.7 -89.9 152.9 5.4 -1.0 11.0 35 35 A S T 3 S+ 0 0 123 -2,-0.2 -1,-0.1 1,-0.2 -2,-0.1 -0.308 109.7 70.5 -53.9 96.4 5.4 -0.4 14.8 36 36 A S T 3 S- 0 0 130 -2,-0.8 2,-0.2 -3,-0.0 -1,-0.2 0.043 97.2 -65.5-170.8 -62.9 8.2 -2.8 15.8 37 37 A G < - 0 0 58 -3,-0.9 -3,-0.2 -5,-0.0 0, 0.0 -0.822 45.9 -81.7 162.7 158.3 11.7 -1.8 14.7 38 38 A S - 0 0 91 -2,-0.2 -5,-0.1 -5,-0.1 -6,-0.1 0.077 47.3-102.2 -66.7-175.0 14.1 -1.3 11.8 39 39 A S S S- 0 0 108 1,-0.1 -1,-0.1 -7,-0.1 -7,-0.0 0.977 94.8 -26.5 -75.8 -61.5 15.9 -4.0 10.0 40 40 A S S S+ 0 0 116 0, 0.0 2,-0.3 0, 0.0 3,-0.2 -0.386 81.6 154.4-157.8 69.7 19.4 -3.7 11.5 41 41 A Y + 0 0 196 1,-0.2 -3,-0.1 2,-0.1 0, 0.0 -0.805 62.5 8.2-104.4 143.9 20.2 -0.2 12.8 42 42 A H 0 0 179 -2,-0.3 -1,-0.2 1,-0.1 0, 0.0 0.971 360.0 360.0 52.4 84.3 22.7 0.6 15.6 43 43 A C 0 0 177 -3,-0.2 -1,-0.1 0, 0.0 -2,-0.1 0.669 360.0 360.0 -61.5 360.0 24.4 -2.8 16.1