==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-FEB-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 08-MAR-10 2KV4 . COMPND 2 MOLECULE: EPIDERMAL GROWTH FACTOR; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR H.W.HUANG,S.K.MOHAN,C.YU . 53 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4306.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 54.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 7.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 15.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A N 0 0 149 0, 0.0 3,-0.2 0, 0.0 22,-0.0 0.000 360.0 360.0 360.0 -27.8 14.8 -7.8 6.1 2 2 A S - 0 0 106 1,-0.2 2,-0.8 20,-0.1 21,-0.1 0.943 360.0-172.5 57.0 51.8 11.3 -6.3 6.5 3 3 A D + 0 0 65 1,-0.1 19,-0.7 19,-0.1 20,-0.2 -0.676 32.2 137.7 -84.7 106.6 12.5 -3.2 4.8 4 4 A S + 0 0 57 -2,-0.8 2,-1.2 -3,-0.2 16,-0.3 -0.060 26.1 132.4-134.5 29.4 9.8 -0.5 5.0 5 5 A E + 0 0 161 1,-0.1 16,-0.1 4,-0.0 -2,-0.0 -0.679 17.7 116.1 -96.3 86.3 12.0 2.4 5.8 6 6 A a >> - 0 0 26 -2,-1.2 4,-2.7 1,-0.2 3,-0.7 -0.517 47.7-167.1-139.4 73.8 11.1 5.3 3.6 7 7 A P H >> S+ 0 0 91 0, 0.0 3,-1.0 0, 0.0 4,-0.6 0.762 74.1 6.4 -33.1 -93.2 9.9 7.9 6.2 8 8 A L H 34 S+ 0 0 144 1,-0.3 0, 0.0 2,-0.2 0, 0.0 0.487 128.8 63.7 -77.2 -1.6 8.1 10.8 4.7 9 9 A S H <> S+ 0 0 58 -3,-0.7 4,-3.7 2,-0.2 5,-0.3 0.709 86.1 67.2 -96.0 -24.8 8.3 9.2 1.3 10 10 A H H << S+ 0 0 56 -4,-2.7 4,-0.4 -3,-1.0 -2,-0.2 0.891 112.6 35.3 -65.2 -34.2 6.1 6.1 2.1 11 11 A D T < S+ 0 0 66 -4,-0.6 -1,-0.3 -5,-0.3 6,-0.2 0.451 119.2 54.3 -95.3 -4.9 3.2 8.4 2.5 12 12 A G T 4 S+ 0 0 51 -3,-0.2 -2,-0.2 -5,-0.1 -3,-0.2 0.838 99.8 55.5 -96.4 -43.1 4.5 10.6 -0.3 13 13 A Y S < S+ 0 0 188 -4,-3.7 -2,-0.1 5,-0.0 -3,-0.1 0.765 119.5 32.3 -58.3 -26.1 5.0 8.0 -3.0 14 14 A b S S- 0 0 14 -4,-0.4 28,-0.1 -5,-0.3 29,-0.1 -0.245 81.9-110.8-123.0-154.4 1.3 7.1 -2.6 15 15 A L S S+ 0 0 81 26,-0.4 -1,-0.1 27,-0.3 28,-0.1 0.832 83.9 17.8-113.6 -84.6 -2.0 8.7 -1.6 16 16 A H S S- 0 0 112 26,-0.3 -5,-0.1 1,-0.1 21,-0.0 -0.081 139.0 -20.0-105.4 32.3 -4.3 8.3 1.4 17 17 A D S S- 0 0 83 -6,-0.2 16,-0.1 -7,-0.1 -3,-0.1 -0.309 82.9-155.4 170.0 -51.4 -1.8 6.8 3.8 18 18 A G - 0 0 0 1,-0.1 2,-0.3 -7,-0.1 15,-0.1 0.757 11.6-173.3 59.0 126.5 1.1 5.4 1.7 19 19 A V - 0 0 33 -10,-0.1 13,-1.0 -8,-0.1 2,-0.7 -0.960 13.9-148.9-150.0 129.7 3.3 2.6 3.0 20 20 A a B +A 31 0A 21 -2,-0.3 2,-0.3 -16,-0.3 11,-0.2 -0.875 37.6 138.9-106.9 110.3 6.5 1.2 1.2 21 21 A M + 0 0 87 9,-2.0 8,-0.2 -2,-0.7 -17,-0.2 -0.767 38.4 62.8-158.4 105.9 7.1 -2.5 1.9 22 22 A Y + 0 0 137 -19,-0.7 7,-0.3 6,-0.3 4,-0.1 0.082 65.3 103.6 177.5 -31.3 8.2 -5.3 -0.4 23 23 A I > + 0 0 44 5,-1.2 3,-1.3 -20,-0.2 6,-0.1 0.833 34.0 162.2 -24.7 -93.1 11.8 -4.4 -1.5 24 24 A E T 3 S- 0 0 52 1,-0.3 -1,-0.1 2,-0.2 -20,-0.0 0.834 90.2 -55.7 70.4 36.3 13.9 -6.6 0.6 25 25 A A T 3 S+ 0 0 91 3,-0.1 -1,-0.3 1,-0.1 -2,-0.1 0.623 134.7 94.4 65.4 15.0 16.9 -6.2 -1.6 26 26 A L S < S- 0 0 119 -3,-1.3 -2,-0.2 -4,-0.1 -3,-0.1 0.400 96.8-124.9-109.5 -4.7 14.5 -7.4 -4.2 27 27 A D + 0 0 136 1,-0.2 2,-0.2 0, 0.0 -4,-0.2 0.879 58.9 152.0 64.8 39.5 13.7 -3.9 -5.2 28 28 A K - 0 0 84 -5,-0.1 -5,-1.2 -6,-0.1 -6,-0.3 -0.518 30.8-161.1 -98.6 166.7 10.1 -4.6 -4.7 29 29 A Y + 0 0 165 -7,-0.3 2,-0.6 -2,-0.2 -7,-0.2 -0.782 14.7 173.7-157.3 104.0 7.3 -2.2 -3.7 30 30 A A - 0 0 41 -2,-0.3 -9,-2.0 -9,-0.1 2,-0.7 -0.974 18.3-162.0-104.8 123.1 3.9 -2.9 -2.2 31 31 A b B -A 20 0A 12 -2,-0.6 2,-0.7 9,-0.5 8,-0.3 -0.911 10.4-179.9-115.3 109.0 2.3 0.3 -1.3 32 32 A N + 0 0 65 -13,-1.0 6,-0.1 -2,-0.7 3,-0.1 -0.904 7.9 169.4-119.3 103.2 -0.6 -0.2 1.1 33 33 A c - 0 0 7 -2,-0.7 2,-0.3 4,-0.6 -1,-0.2 0.977 55.2 -42.5 -73.2 -80.7 -2.4 2.9 2.1 34 34 A V B > -B 37 0B 57 3,-1.0 3,-2.5 -17,-0.0 2,-2.4 -0.937 62.9 -81.0-154.7 160.1 -5.6 2.0 4.0 35 35 A V T 3 S+ 0 0 71 -2,-0.3 11,-0.2 1,-0.3 3,-0.1 -0.477 125.8 45.9 -70.6 79.3 -8.5 -0.4 3.9 36 36 A G T 3 S+ 0 0 24 -2,-2.4 9,-0.3 9,-0.7 2,-0.3 0.186 108.1 55.8 163.8 -14.7 -10.3 1.7 1.4 37 37 A Y B < +B 34 0B 87 -3,-2.5 -3,-1.0 7,-0.2 -4,-0.6 -0.873 58.5 134.1-141.2 105.5 -7.5 2.4 -1.1 38 38 A I + 0 0 45 6,-0.6 9,-0.2 -2,-0.3 2,-0.1 -0.857 15.1 123.8-150.7 115.3 -5.5 -0.4 -2.7 39 39 A G S S- 0 0 13 -8,-0.3 2,-3.2 -2,-0.3 6,-0.1 -0.480 91.3 -42.1-169.6 102.4 -4.6 -0.7 -6.4 40 40 A E S S+ 0 0 159 1,-0.2 -9,-0.5 -2,-0.1 -8,-0.0 -0.280 151.1 8.9 71.5 -53.2 -1.1 -1.0 -7.7 41 41 A R S S- 0 0 80 -2,-3.2 -26,-0.4 -11,-0.1 -1,-0.2 -0.302 132.3 -69.6-153.1 48.8 -0.1 1.5 -5.1 42 42 A c S S+ 0 0 0 -11,-0.2 -27,-0.3 -28,-0.1 -26,-0.3 0.978 91.5 114.1 59.0 94.4 -3.3 1.9 -3.0 43 43 A Q + 0 0 62 1,-0.2 2,-0.4 -28,-0.1 -4,-0.1 0.240 55.7 79.0-168.0 13.3 -6.1 3.7 -4.9 44 44 A Y S > S- 0 0 131 1,-0.3 -6,-0.6 0, 0.0 3,-0.5 -0.923 87.0 -57.7-138.7 111.2 -8.9 1.1 -5.3 45 45 A R T 3 - 0 0 133 -2,-0.4 -9,-0.7 -9,-0.3 -1,-0.3 0.367 62.7 -77.5 69.1 176.3 -11.5 -0.1 -2.9 46 46 A D T 3>>S+ 0 0 38 -10,-0.2 5,-2.4 -11,-0.2 4,-1.4 -0.290 72.6 140.9-114.2 44.2 -11.3 -1.7 0.5 47 47 A L I <4> + 0 0 33 -3,-0.5 5,-1.6 4,-0.2 6,-1.4 0.872 62.3 62.3 -50.2 -45.7 -10.4 -5.0 -0.9 48 48 A K I 45S+ 0 0 54 -3,-0.2 -1,-0.2 -14,-0.2 -13,-0.1 0.874 123.7 7.3 -56.0 -50.3 -8.0 -5.7 1.9 49 49 A W I 45S+ 0 0 139 -3,-0.4 -2,-0.2 4,-0.2 -1,-0.1 0.883 139.8 10.6 -98.7 -58.6 -10.4 -5.7 4.8 50 50 A W I <5S+ 0 0 173 -4,-1.4 -3,-0.2 3,-0.2 -2,-0.1 0.923 119.3 48.9 -97.8 -50.5 -14.0 -5.4 3.6 51 51 A E I