==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 08-MAR-10 2KV5 . COMPND 2 MOLECULE: PUTATIVE UNCHARACTERIZED PROTEIN RNAI; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.ZANGGER,C.GOBL,S.KOSOL,H.M.RUCKERT . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3847.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 48.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 215 0, 0.0 3,-0.2 0, 0.0 4,-0.2 0.000 360.0 360.0 360.0 142.0 -14.3 19.6 -1.8 2 2 A K > + 0 0 112 1,-0.1 4,-2.0 2,-0.1 5,-0.4 0.170 360.0 140.1-111.8 14.5 -12.9 16.1 -2.3 3 3 A D T 4 S+ 0 0 120 1,-0.3 -1,-0.1 2,-0.2 0, 0.0 0.776 98.9 0.0 -23.8 -50.4 -13.9 15.8 -6.0 4 4 A L T >> S+ 0 0 110 -3,-0.2 3,-1.5 2,-0.1 4,-1.4 0.565 120.7 80.7-117.8 -19.7 -10.5 14.0 -6.3 5 5 A M H 3> S+ 0 0 126 1,-0.3 4,-1.6 2,-0.2 3,-0.5 0.905 98.7 44.5 -55.6 -43.1 -9.2 14.2 -2.7 6 6 A S H 3< S+ 0 0 65 -4,-2.0 -1,-0.3 1,-0.2 4,-0.2 0.491 112.1 56.3 -79.4 -2.9 -11.3 11.2 -1.8 7 7 A L H <4 S+ 0 0 113 -3,-1.5 -2,-0.2 -5,-0.4 -1,-0.2 0.620 108.1 44.2-100.9 -18.9 -10.2 9.5 -5.1 8 8 A V H X S+ 0 0 91 -4,-1.4 4,-1.5 -3,-0.5 -2,-0.2 0.881 118.6 38.7 -91.2 -46.6 -6.4 9.8 -4.4 9 9 A I H X S+ 0 0 96 -4,-1.6 4,-1.2 -5,-0.2 -3,-0.1 0.799 110.1 63.8 -73.6 -30.4 -6.3 8.6 -0.7 10 10 A A H > S+ 0 0 47 -5,-0.3 4,-1.3 2,-0.2 3,-0.4 0.977 110.9 32.5 -57.9 -61.7 -9.0 6.0 -1.3 11 11 A P H > S+ 0 0 70 0, 0.0 4,-2.3 0, 0.0 5,-0.3 0.948 114.3 58.0 -62.6 -52.1 -7.0 3.8 -3.8 12 12 A I H X S+ 0 0 63 -4,-1.5 4,-1.5 1,-0.2 -2,-0.2 0.779 104.7 57.8 -50.4 -27.5 -3.6 4.5 -2.3 13 13 A F H >X S+ 0 0 133 -4,-1.2 4,-2.4 -3,-0.4 3,-1.2 0.999 110.0 36.2 -66.6 -70.7 -5.0 3.1 0.9 14 14 A V H 3X S+ 0 0 85 -4,-1.3 4,-1.5 1,-0.3 -2,-0.2 0.740 119.8 54.7 -55.4 -23.0 -6.1 -0.4 -0.3 15 15 A G H 3< S+ 0 0 33 -4,-2.3 4,-0.4 -5,-0.2 -1,-0.3 0.786 110.0 43.2 -82.2 -28.7 -3.0 -0.3 -2.5 16 16 A L H S+ 0 0 99 -4,-0.4 4,-1.8 2,-0.2 -1,-0.3 0.883 99.5 62.7 -77.5 -41.2 1.0 -4.6 -0.4 20 20 A M H X S+ 0 0 141 -4,-1.2 4,-0.8 -3,-0.5 -2,-0.2 0.862 113.7 35.5 -51.3 -40.6 2.1 -4.6 3.3 21 21 A I H X S+ 0 0 83 -4,-1.6 4,-1.6 2,-0.2 -1,-0.2 0.805 107.1 67.1 -84.3 -32.6 0.7 -8.2 3.6 22 22 A S H < S+ 0 0 55 -4,-1.3 -2,-0.2 -5,-0.3 -1,-0.2 0.815 101.8 50.5 -57.7 -29.9 1.8 -9.2 0.1 23 23 A R H >< S+ 0 0 138 -4,-1.8 3,-2.6 1,-0.2 4,-0.3 0.913 103.1 57.0 -74.4 -43.5 5.4 -8.8 1.3 24 24 A V H >< S+ 0 0 100 -4,-0.8 3,-0.7 1,-0.3 -2,-0.2 0.824 94.9 68.9 -55.7 -31.5 4.8 -11.0 4.3 25 25 A L T 3< S+ 0 0 136 -4,-1.6 -1,-0.3 1,-0.2 -2,-0.2 0.677 124.8 8.8 -61.5 -17.9 3.7 -13.6 1.9 26 26 A D T < S+ 0 0 130 -3,-2.6 2,-1.0 -4,-0.1 -1,-0.2 0.058 91.1 122.3-153.4 30.4 7.3 -13.8 0.8 27 27 A E < + 0 0 112 -3,-0.7 3,-0.1 -4,-0.3 -3,-0.1 -0.588 27.5 135.3 -99.1 71.2 9.3 -11.7 3.2 28 28 A E + 0 0 163 -2,-1.0 2,-0.4 1,-0.3 -1,-0.2 0.973 69.4 8.0 -78.6 -75.0 11.8 -14.3 4.4 29 29 A D - 0 0 152 -3,-0.2 -1,-0.3 1,-0.1 3,-0.1 -0.882 51.5-170.0-114.0 144.4 15.2 -12.6 4.4 30 30 A D - 0 0 143 -2,-0.4 2,-0.3 1,-0.3 -1,-0.1 0.872 66.7 -38.9 -94.9 -50.6 16.0 -8.9 3.8 31 31 A S - 0 0 110 2,-0.0 2,-0.7 0, 0.0 -1,-0.3 -0.898 50.6-111.6-176.7 147.1 19.8 -9.0 3.5 32 32 A R 0 0 250 -2,-0.3 -3,-0.0 -3,-0.1 0, 0.0 -0.793 360.0 360.0 -92.4 117.0 22.9 -10.6 4.9 33 33 A K 0 0 257 -2,-0.7 -2,-0.0 0, 0.0 -1,-0.0 -0.759 360.0 360.0 -85.7 360.0 25.1 -8.1 6.9